Scalable Optimization-Based Sampling on Function Space
暂无分享,去创建一个
Tiangang Cui | Zheng Wang | Johnathan M. Bardsley | Youssef Marzouk | Johnathan Bardsley | Y. Marzouk | Zheng Wang | T. Cui
[1] T. Coleman,et al. On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .
[2] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[3] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[4] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[5] Zheng Wang,et al. Bayesian Inverse Problems with l1 Priors: A Randomize-Then-Optimize Approach , 2016, SIAM J. Sci. Comput..
[6] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[7] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[8] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[9] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[10] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .
[11] T. J. Dodwell,et al. A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.
[12] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[13] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[14] Dean S. Oliver,et al. Metropolized Randomized Maximum Likelihood for Improved Sampling from Multimodal Distributions , 2015, SIAM/ASA J. Uncertain. Quantification.
[15] Jonathan C. Mattingly,et al. SPDE limits of the random walk Metropolis algorithm in high dimensions , 2009 .
[16] G. Prato. An Introduction to Infinite-Dimensional Analysis , 2006 .
[17] Tiangang Cui,et al. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction , 2015, J. Comput. Phys..
[18] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[19] Andrew M. Stuart,et al. Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.
[20] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[21] Y. Marzouk,et al. An introduction to sampling via measure transport , 2016, 1602.05023.
[22] Youssef Marzouk,et al. Transport Map Accelerated Markov Chain Monte Carlo , 2014, SIAM/ASA J. Uncertain. Quantification.
[23] Tiangang Cui,et al. Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..
[24] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[25] Thomas F. Coleman,et al. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..
[26] Benjamin Peherstorfer,et al. Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..
[27] Andrew M. Stuart,et al. Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..
[28] Andrew M. Stuart,et al. Importance Sampling: Computational Complexity and Intrinsic Dimension , 2015 .
[29] Omar Ghattas,et al. A Randomized Maximum A Posteriori Method for Posterior Sampling of High Dimensional Nonlinear Bayesian Inverse Problems , 2016, SIAM J. Sci. Comput..
[30] Jonathan C. Mattingly,et al. Diffusion limits of the random walk metropolis algorithm in high dimensions , 2010, 1003.4306.
[31] Aaron Smith,et al. Parallel Local Approximation MCMC for Expensive Models , 2016, SIAM/ASA J. Uncertain. Quantification.
[32] Daniel Rudolf,et al. On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm , 2015, Found. Comput. Math..
[33] Ben Calderhead,et al. A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.
[34] Gene H. Golub,et al. Matrix computations , 1983 .
[35] Matthias Morzfeld,et al. Implicit particle filters for data assimilation , 2010, 1005.4002.
[36] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[37] Heikki Haario,et al. Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..
[38] Matthias Morzfeld,et al. A random map implementation of implicit filters , 2011, J. Comput. Phys..
[39] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[40] James O. Berger,et al. Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .