Laser shock adhesion test numerical optimization for composite bonding assessment

[1]  I. Solodov,et al.  Evaluation of bonding quality in CFRP composite laminates by measurements of local vibration nonlinearity , 2018 .

[2]  M. Salvato,et al.  Testing an Electronic Nose for Pre-Bond NDT in Realistic CFRP Parts Assembly and Repair , 2018, 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace).

[3]  Konstantinos Tserpes,et al.  Study of Adhesive Bonds by Mechanical Tests, Ultrasounds and Electromechanical Impedance Method , 2017 .

[4]  Jeremy Laliberte,et al.  Investigation of bolted/bonded composite joint behaviour using design of experiments , 2017 .

[5]  F. Touchard,et al.  Numerical modeling of laser-induced shock experiments for the development of the adhesion test for bonded composite materials , 2016 .

[6]  Steffen Stelzer,et al.  Strength and damage tolerance of composite–composite joints with steel and titanium through the thickness reinforcements , 2016 .

[7]  T. Löbel Disbond Stopping Concept: Surface Toughening , 2016 .

[8]  Patrick Combis,et al.  Numerical study of laser ablation on aluminum for shock-wave applications: development of a suitable model by comparison with recent experiments , 2016 .

[9]  Wieslaw Ostachowicz,et al.  The use of electromechanical impedance conductance signatures for detection of weak adhesive bonds of carbon fibre–reinforced polymer , 2015 .

[10]  F. Coste,et al.  Laser-delayed double shock-wave generation in water-confinement regime , 2015 .

[11]  F. Touchard,et al.  Development of the laser shock wave adhesion test on bonded CFRP composite , 2014 .

[12]  M. Boustie,et al.  Effects of the shock duration on the response of CFRP composite laminates , 2014 .

[13]  Laurent Berthe,et al.  Study of the response of CFRP composite laminates to a laser-induced shock , 2014 .

[14]  Laurent Berthe,et al.  Development of a laser shock adhesion test for the assessment of weak adhesive bonded CFRP structures , 2014 .

[15]  C. Hühne,et al.  Experimental Investigations of the Disbond Stopping Capability of a Novel Epoxy-Thermoplastic Bondline Architecture for Composite Joints , 2014 .

[16]  Laurent Berthe,et al.  A study of composite material damage induced by laser shock waves , 2013 .

[17]  Jean-Pierre Monchalin,et al.  Adhesive bond testing of carbon–epoxy composites by laser shockwave , 2011 .

[18]  Kevin R. Housen,et al.  Laser Bond Testing , 2009 .

[19]  Laurent Berthe,et al.  Application of laser shock adhesion testing to the study of the interlamellar strength and coating–substrate adhesion in cold-sprayed copper coating of aluminum , 2005 .

[20]  M. Arrigoni ETUDE DE L'INFLUENCE DES RUGOSITES D'INTERFACE, DE POROSITES ET DE L'EPAISSEUR D'ECHANTILLON SUR LA PROPAGATION DES CHOCS LASER DANS DES SYSTEMES REVETUS. APPLICATION AU PROCEDE LASAT (LASER ADHÉRENCE TEST) , 2004 .

[21]  C. Bolis Étude numérique et expérimentale de la séparation par chocs brefs d'interface de revêtements multi-couches. Application au test d'adhérence par chocs laser , 2004 .

[22]  R. Fabbro,et al.  Wavelength dependent of laser shock-wave generation in the water-confinement regime , 1999 .

[23]  J. Yuan,et al.  Measurement of interface strength by the modified laser spallation technique. I - Experiment and simulation of the spallation process. II - Applications to metal/ceramic interfaces , 1993 .

[24]  J. R. Huntsberger Adhesion measurement of thin films, thick films and bulk coatings , 1979 .

[25]  Gongdong Wang,et al.  Using dampers to mitigate thrust forces during carbon-fibre reinforced polymer drilling: Experimental and finite element evaluation , 2018 .

[26]  Jl Vossen,et al.  Measurements of Film-Substrate Bond Strength by Laser Spallation , 1978 .