Defect diamond-like tellurides as infrared nonlinear optical materials with giant second-harmonic generation tensor

[1]  Xin Wu,et al.  Recent progress in the design of IR nonlinear optical materials by partial chemical substitution: Structural evolution and performance optimization , 2023, Coordination Chemistry Reviews.

[2]  Jun Yu Li,et al.  Partial substitution induced structural transformation and enhanced nonlinear optical properties of Na2GaxIn6-xSe10 (x = 3, 3.76) , 2023, Materials Today Physics.

[3]  Jiyong Yao,et al.  The Kurtz–Perry Powder Technique Revisited: A Study of the Effect of Reference Selection on Powder Second-Harmonic Generation Response , 2023, Molecules.

[4]  Ming-Hsien Lee,et al.  Bridging oxygen atoms in trigonal prism units driven strong second-harmonic-generation efficiency in Sr3Ge2O4Te3. , 2022, Chemical communications.

[5]  Pandiyarasan Veluswamy,et al.  Pressure-driven thermoelectric properties of defect chalcopyrite structured ZnGa2Te4: ab initio study , 2022, RSC advances.

[6]  Zhihua Yang,et al.  The Combination of Structure Prediction and Experiment for the Exploration of Alkali‐Earth Metal‐Contained Chalcopyrite‐Like IR Nonlinear Optical Material , 2022, Advanced science.

[7]  Jiyong Yao,et al.  Hg-based chalcogenides: An intriguing class of infrared nonlinear optical materials , 2022, Coordination Chemistry Reviews.

[8]  Zheshuai Lin,et al.  Cd7SiAs6, a Nonchalcopyrite Arsenide with a Strong Nonlinear-Optical Response. , 2021, Inorganic chemistry.

[9]  Xintao Wu,et al.  Transition-metal-based chalcogenides: A rich source of infrared nonlinear optical materials , 2021 .

[10]  B. B. Mulik,et al.  Bi2O3@Bi nanoparticles for ultrasensitive electrochemical determination of thiourea: monitoring towards environmental pollutants , 2021 .

[11]  Xintao Wu,et al.  Ba2Ge2Te5: a ternary NLO-active telluride with unusual one-dimensional helical chains and giant second harmonic-generation tensors , 2021, Inorganic Chemistry Frontiers.

[12]  Zheshuai Lin,et al.  Synthesis and Characterizations of Two Tellurides β-BaGa2Te4 and Ba5Ga2Ge3Te12 with Flexible Chain Structure. , 2021, Inorganic chemistry.

[13]  Zhihua Yang,et al.  Hg3P2S8: A New Promising Infrared Nonlinear Optical Material with a Large Second-Harmonic Generation and a High Laser-Induced Damage Threshold , 2021, Chemistry of Materials.

[14]  Zhihua Yang,et al.  Li4MgGe2S7: The First Alkali and Alkaline-earth Diamond-Like Infrared Nonlinear Optical Material with Exceptional Large Band Gap. , 2021, Angewandte Chemie.

[15]  Zheshuai Lin,et al.  From AgGaS2 to AgHgPS4: vacancy defects and highly distorted HgS4 tetrahedra double-induced remarkable second-harmonic generation response , 2021 .

[16]  F. Liang,et al.  Na4CdGe2S7: A Sodium-Rich Quaternary Wide-Band-Gap Chalcogenide with Two-Dimensional [Ge2CdS7]∞ Layers. , 2020, Inorganic chemistry.

[17]  Yicheng Wu,et al.  Chalcophosphates: A Treasure House of Infrared Nonlinear Optical Materials , 2020, Crystal Growth & Design.

[18]  J.H. Zhao,et al.  Ultrafast laser-induced black silicon, from micro-nanostructuring, infrared absorption mechanism, to high performance detecting devices , 2020 .

[19]  Yicheng Wu,et al.  Molecular Construction from AgGaS2 to CuZnPS4: Defect-Induced Second Harmonic Generation Enhancement and Cosubstitution-Driven Band Gap Enlargement , 2020 .

[20]  Zhihua Yang,et al.  Targeting the Next Generation of Deep-Ultraviolet Nonlinear Optical Materials: Expanding from Borates to Borate Fluorides to Fluorooxoborates. , 2019, Accounts of chemical research.

[21]  P. Halasyamani,et al.  The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals , 2018, Nature Communications.

[22]  F. Liang,et al.  Nonbonding Electrons Driven Strong SHG Effect in Hg2GeSe4: Experimental and Theoretical Investigations. , 2018, Inorganic chemistry.

[23]  G. Morello,et al.  Raman and photoluminescence spectra of ZnTe/CdSe and ZnTe/CdTe tetrapod shaped nano-hetero structures , 2017 .

[24]  Yicheng Wu,et al.  Hg-Based Infrared Nonlinear Optical Material KHg4Ga5Se12 Exhibits Good Phase-Matchability and Exceptional Second Harmonic Generation Response , 2017 .

[25]  F. Liang,et al.  Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures , 2017 .

[26]  A. Soni,et al.  Optoelectronic behavioral study of defect-chalcopyrite semiconductors XGa2Te4 (X = Zn, Cd) , 2017 .

[27]  Zheshuai Lin,et al.  Midinfrared Nonlinear Optical Thiophosphates from LiZnPS4 to AgZnPS4: A Combined Experimental and Theoretical Study. , 2016, Inorganic chemistry.

[28]  J. Cui,et al.  Coexisting transport behaviors in quasibinary Cd(3 − 3m)Ga2mTe3 (m = 0.75–0.98) system with structural vacancy and cationic interdiffusion , 2016 .

[29]  D. J. Clark,et al.  Polymorphism and Second Harmonic Generation in a Novel Diamond-like Semiconductor: Li2MnSnS4 , 2015 .

[30]  D. J. Clark,et al.  Infrared nonlinear optical properties of lithium-containing diamond-like semiconductors Li2ZnGeSe4 and Li2ZnSnSe4. , 2015, Dalton transactions.

[31]  D. J. Clark,et al.  Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors. , 2015, Inorganic chemistry.

[32]  Ming-Hsien Lee,et al.  Development of nonlinear optical materials promoted by density functional theory simulations , 2014 .

[33]  A. A. Martynov,et al.  Phase equilibrium studies in the PbTe–Ga2Te3 and PbTe–In2Te3 systems for growing new nonlinear optical crystals of PbGa6Te10 and PbIn6Te10 with transparency extending into the far-IR , 2014 .

[34]  D. J. Clark,et al.  Optical nonlinearity in Cu₂CdSnS₄ and α/β-Cu₂ZnSiS₄: diamond-like semiconductors with high laser-damage thresholds. , 2014, Inorganic chemistry.

[35]  M. Kanatzidis,et al.  Metal Chalcogenides: A Rich Source of Nonlinear Optical Materials , 2014 .

[36]  F. Yakuphanoglu,et al.  Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol-gel calcination technique , 2013 .

[37]  F. Yakuphanoglu,et al.  Determination of optical band gap of ZnO:ZnAl2O4 composite semiconductor nanopowder materials by optical reflectance method , 2013, Journal of Electroceramics.

[38]  I. Yahia,et al.  Structural characterization and novel optical properties of defect chalcopyrite ZnGa2Te4 thin films , 2011 .

[39]  Kazutoshi Miwa,et al.  Prediction of Raman spectra with ultrasoft pseudopotentials , 2011 .

[40]  Ming-Hsien Lee,et al.  Ab initio studies on the mechanism for linear and nonlinear optical effects in YAl3(BO3)4 , 2011 .

[41]  Rakesh Agrawal,et al.  Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication , 2011 .

[42]  M. Segall,et al.  Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation , 2010 .

[43]  Jonathan W. Lekse,et al.  Second-harmonic generation and crystal structure of the diamond-like semiconductors Li(2)CdGeS(4) and Li(2)CdSnS(4). , 2009, Inorganic chemistry.

[44]  U. Kleineberg,et al.  Single-Cycle Nonlinear Optics , 2008, Science.

[45]  Ming-Hsien Lee,et al.  Electro-optical modulation for a boron nitride nanotube probed by first-principles calculations , 2006 .

[46]  S. Clark,et al.  Variational density-functional perturbation theory for dielectrics and lattice dynamics. , 2006 .

[47]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[48]  Valentin Petrov,et al.  Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2 , 2004 .

[49]  Bujin Guo,et al.  Laser-based mid-infrared reflectance imaging of biological tissues. , 2004, Optics express.

[50]  S. Adachi,et al.  Optical properties and electronic band structure of CdGa2Te4 , 2003 .

[51]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[52]  S. Setzler,et al.  Crystal growth and properties of AgGaTe2 , 2000 .

[53]  Jiao Y. Y. Lin,et al.  Mechanism for linear and nonlinear optical effects in beta-BaB2O4 crystals , 1999 .

[54]  Konstantin L. Vodopyanov,et al.  Tunable middle infrared downconversion in GaSe and AgGaS2 , 1998 .

[55]  Heine,et al.  Optimized and transferable nonlocal separable ab initio pseudopotentials. , 1993, Physical review. B, Condensed matter.

[56]  P. Koidl,et al.  Elastic, optical and nonlinear optical properties of InPS4 , 1983 .

[57]  F. A. Thiel,et al.  Nonlinear optical susceptibility of HgGa 2 S 4 , 1976 .

[58]  E. Simmons Diffuse reflectance spectroscopy: a comparison of the theories. , 1975, Applied optics.

[59]  G. D. Boyd,et al.  Linear and nonlinear optical properties of LiInS2 , 1973 .

[60]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[61]  G. D. Boyd,et al.  Linear and nonlinear optical properties of some ternary selenides , 1972 .

[62]  G. Boyd,et al.  LINEAR AND NONLINEAR OPTICAL PROPERTIES OF ZnGeP2 AND CdSe , 1971 .

[63]  S. K. Kurtz,et al.  A powder technique for the evaluation of nonlinear optical materials , 1968 .

[64]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[65]  G. Frank,et al.  Untersuchungen über ternäre Chalkogenide. VI. Über Ternäre Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber , 1955 .

[66]  Zheshuai Lin,et al.  Ba6In2Ge2Te15: A THz Birefringent Material with an Intriguing Quasi-[Te5]4- Chain Possessing Giant Optical Anisotropy and Ultrawide Transmission Range , 2022, Inorganic Chemistry Frontiers.

[67]  Zheshuai Lin,et al.  Highly Polarized [GeOTe3] Motif-Driven Structure Order Exaltation and Enhanced Second Harmonic Generation Response in the New Nonlinear Optical Oxytelluride Ba3Ge2O4Te3 , 2021, Journal of Materials Chemistry C.

[68]  D. J. Clark,et al.  Correction: Infrared nonlinear optical properties of lithium-containing diamond-like semiconductors Li2ZnGeSe4 and Li2ZnSnSe4. , 2017, Dalton transactions.

[69]  Saliha Ilican,et al.  The determination of the optical band and optical constants of non-crystalline and crystalline ZnO thin films deposited by spray pyrolysis , 2007 .

[70]  Baichang Wu,et al.  Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7 , 1995, Nature.

[71]  Rabe,et al.  Optimized pseudopotentials. , 1990, Physical review. B, Condensed matter.

[72]  V. Heine,et al.  Kinetic energy tuning for optimising pseudopotentials and projector reduction , 2022 .