Eigenvalues of Schrödinger operators with definite and indefinite weights

In this paper computational algorithms are presented to compute the eigenvalues of Schrodinger operators with definite and indefinite weights. The algorithms are based on Titchmarsh-Weyl's theory and can be applied to solve a wide class of problems in quantum mechanics. Explicit examples are presented, some of which recover the known exact solutions. Finally, some analytical bounds have been reviewed for definite and indefinite singular problems. Weyl's Spectral Bisection Algorithm has been proposed to solve definite problems as algebraic problems. Open problems have been presented based on the results of the presented algorithms.

[1]  ftp ejde.math.txstate.edu (login: ftp) NEWTON’S METHOD IN THE CONTEXT OF GRADIENTS , 2022 .

[2]  Semiclassical energy formulae for power law and log potentials in quantum mechanics , 2003, math-ph/0305020.

[3]  R. Hall Energy trajectories for the N-boson problem by the method of potential envelopes , 1980 .

[4]  Generalized comparison theorems in quantum mechanics , 2002, math-ph/0208047.

[5]  V. C. Aguilera-Navarro,et al.  Variational and perturbative schemes for a spiked harmonic oscillator , 1990 .

[6]  Schrödinger equations with indefinite weights in the whole space , 2009 .

[7]  M. Znojil Singular potentials with quasi-exact Dirac bound states , 1999 .

[8]  C. Trunk,et al.  Eigenvalue estimates for singular left-definite Sturm-Liouville operators , 2010, 1012.4195.

[9]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .

[10]  R. M. Bradley,et al.  Scaling properties of antipercolation hulls on the triangular lattice , 1992 .

[11]  R. Hall,et al.  A basis for variational calculations in d dimensions , 2004, math-ph/0410035.

[12]  S. Flügge,et al.  Practical Quantum Mechanics , 1976 .

[13]  P. Shanley Spectral inversion of an indefinite Sturm–Liouville problem due to Richardson , 2008, 0806.3517.

[14]  V. C. Aguilera-Navarro,et al.  Nonsingular spiked harmonic oscillator , 1991 .

[15]  C. Trunk,et al.  Accumulation of complex eigenvalues of indefinite Sturm–Liouville operators , 2008 .

[16]  F. Philipp,et al.  Spectral analysis of singular ordinary differential operators with indefinite weights , 2010 .

[17]  W. Norrie Everitt,et al.  A Catalogue of Sturm-Liouville Differential Equations , 2005 .

[18]  Jiangang Qi,et al.  A priori bounds and existence of non-real eigenvalues of indefinite Sturm-Liouville problems , 2013, 1306.5517.

[19]  Ivan Gonoskov Cyclic Operator Decomposition for Solving the Differential Equations , 2012 .

[20]  A. Mingarelli Indefinite Sturm-Liouville problems , 1982 .

[21]  Jiangang Qi,et al.  Non-real eigenvalues of indefinite Sturm–Liouville problems☆ , 2013 .

[22]  Christer Bennewitz,et al.  The Titchmarsh-Weyl Eigenfunction Expansion Theorem for Sturm-Liouville Differential Equations , 2005 .

[23]  C. Trunk,et al.  Spectral properties of singular Sturm—Liouville operators with indefinite weight sgn x , 2007, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[24]  C. Trunk,et al.  On the negative squares of indefinite Sturm–Liouville operators , 2007 .

[25]  J. Behrndt On the Spectral Theory of Singular Indefinite Sturm-Liouville Operators , 2007 .

[27]  J. Behrndt An Open Problem: Accumulation of Nonreal Eigenvalues of Indefinite Sturm–Liouville Operators , 2013, Integral Equations and Operator Theory.

[28]  C. Trunk,et al.  Non-real eigenvalues of singular indefinite Sturm-Liouville operators , 2009 .

[29]  H. Langer,et al.  A Krein space approach to symmetric ordinary differential operators with an indefinite weight function , 1989 .

[30]  J. R. Haddock,et al.  Periodic boundary value problems and monotone iterative methods for functional differential equations , 1994 .

[31]  Anton Zettl,et al.  Sturm-Liouville theory , 2005 .

[32]  F. Philipp,et al.  Bounds on the non-real spectrum of differential operators with indefinite weights , 2012, 1204.1112.

[33]  On Finite Rank Perturbations of Selfadjoint Operators in Krein Spaces and Eigenvalues in Spectral Gaps , 2014 .

[34]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[35]  Non-zero solutions for a Schrödinger equation with indefinite linear and nonlinear terms , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.