Eigenvalues of Schrödinger operators with definite and indefinite weights
暂无分享,去创建一个
[1] ftp ejde.math.txstate.edu (login: ftp) NEWTON’S METHOD IN THE CONTEXT OF GRADIENTS , 2022 .
[2] Semiclassical energy formulae for power law and log potentials in quantum mechanics , 2003, math-ph/0305020.
[3] R. Hall. Energy trajectories for the N-boson problem by the method of potential envelopes , 1980 .
[4] Generalized comparison theorems in quantum mechanics , 2002, math-ph/0208047.
[5] V. C. Aguilera-Navarro,et al. Variational and perturbative schemes for a spiked harmonic oscillator , 1990 .
[6] Schrödinger equations with indefinite weights in the whole space , 2009 .
[7] M. Znojil. Singular potentials with quasi-exact Dirac bound states , 1999 .
[8] C. Trunk,et al. Eigenvalue estimates for singular left-definite Sturm-Liouville operators , 2010, 1012.4195.
[9] H. Weyl,et al. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .
[10] R. M. Bradley,et al. Scaling properties of antipercolation hulls on the triangular lattice , 1992 .
[11] R. Hall,et al. A basis for variational calculations in d dimensions , 2004, math-ph/0410035.
[12] S. Flügge,et al. Practical Quantum Mechanics , 1976 .
[13] P. Shanley. Spectral inversion of an indefinite Sturm–Liouville problem due to Richardson , 2008, 0806.3517.
[14] V. C. Aguilera-Navarro,et al. Nonsingular spiked harmonic oscillator , 1991 .
[15] C. Trunk,et al. Accumulation of complex eigenvalues of indefinite Sturm–Liouville operators , 2008 .
[16] F. Philipp,et al. Spectral analysis of singular ordinary differential operators with indefinite weights , 2010 .
[17] W. Norrie Everitt,et al. A Catalogue of Sturm-Liouville Differential Equations , 2005 .
[18] Jiangang Qi,et al. A priori bounds and existence of non-real eigenvalues of indefinite Sturm-Liouville problems , 2013, 1306.5517.
[19] Ivan Gonoskov. Cyclic Operator Decomposition for Solving the Differential Equations , 2012 .
[20] A. Mingarelli. Indefinite Sturm-Liouville problems , 1982 .
[21] Jiangang Qi,et al. Non-real eigenvalues of indefinite Sturm–Liouville problems☆ , 2013 .
[22] Christer Bennewitz,et al. The Titchmarsh-Weyl Eigenfunction Expansion Theorem for Sturm-Liouville Differential Equations , 2005 .
[23] C. Trunk,et al. Spectral properties of singular Sturm—Liouville operators with indefinite weight sgn x , 2007, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[24] C. Trunk,et al. On the negative squares of indefinite Sturm–Liouville operators , 2007 .
[25] J. Behrndt. On the Spectral Theory of Singular Indefinite Sturm-Liouville Operators , 2007 .
[27] J. Behrndt. An Open Problem: Accumulation of Nonreal Eigenvalues of Indefinite Sturm–Liouville Operators , 2013, Integral Equations and Operator Theory.
[28] C. Trunk,et al. Non-real eigenvalues of singular indefinite Sturm-Liouville operators , 2009 .
[29] H. Langer,et al. A Krein space approach to symmetric ordinary differential operators with an indefinite weight function , 1989 .
[30] J. R. Haddock,et al. Periodic boundary value problems and monotone iterative methods for functional differential equations , 1994 .
[31] Anton Zettl,et al. Sturm-Liouville theory , 2005 .
[32] F. Philipp,et al. Bounds on the non-real spectrum of differential operators with indefinite weights , 2012, 1204.1112.
[33] On Finite Rank Perturbations of Selfadjoint Operators in Krein Spaces and Eigenvalues in Spectral Gaps , 2014 .
[34] D. Griffiths,et al. Introduction to Quantum Mechanics , 1960 .
[35] Non-zero solutions for a Schrödinger equation with indefinite linear and nonlinear terms , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.