Supervised domain adaptation for I-vector based speaker recognition

In this paper, we present a comprehensive study on supervised domain adaptation of PLDA based i-vector speaker recognition systems. After describing the system parameters subject to adaptation, we study the impact of their adaptation on recognition performance. Using the recently designed domain adaptation challenge, we observe that the adaptation of the PLDA parameters (i.e. across-class and within-class co variances) produces the largest gains. Nonetheless, length-normalization is also important; whereas using an indomani UBM and T matrix is not crucial. For the PLDA adaptation, we compare four approaches. Three of them are proposed in this work, and a fourth one was previously published. Overall, the four techniques are successful at leveraging varying amounts of labeled in-domain data and their performance is quite similar. However, our approaches are less involved, and two of them are applicable to a larger class of models (low-rank across-class).