The role of free volume, hydrogen bonds, and crosslinks on physical aging in polymers of intrinsic microporosity (PIMs)

Physical aging rates strongly correlate with the initial free volume of microporous polymers. Introducing hydrogen bonds and crosslinks can reduce the initial free volume and significantly impact gas separation selectivity over time.

[1]  Won Hee Lee,et al.  Multi-lab study on the pure-gas permeation of commercial polysulfone (PSf) membranes: Measurement standards and best practices , 2022, Journal of Membrane Science.

[2]  Jun Myun Ahn,et al.  Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations , 2022, Science.

[3]  Nanwen Li,et al.  Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends , 2021, Nature Communications.

[4]  Albert Wu,et al.  Revisiting group contribution theory for estimating fractional free volume of microporous polymer membranes , 2021 .

[5]  T. Luo,et al.  Pentiptycene-based ladder polymers with configurational free volume for enhanced gas separation performance and physical aging resistance , 2021, Proceedings of the National Academy of Sciences.

[6]  Ali K. Sekizkardes,et al.  Recent Developments in High-Performance Membranes for CO2 Separation , 2021, Membranes.

[7]  C. Doherty,et al.  Leveraging free volume manipulation to improve membrane separation performance of amine-functionalized PIM-1. , 2020, Angewandte Chemie.

[8]  C. Doherty,et al.  Free volume manipulation of a 6FDA-HAB polyimide using a solid-state protection/deprotection strategy , 2020 .

[9]  C. Doherty,et al.  Facile and Time-Efficient Carboxylic Acid Functionalization of PIM-1: Effect on Molecular Packing and Gas Separation Performance , 2020 .

[10]  P. Webley,et al.  Physical Aging Investigations of a Spirobisindane-Locked Polymer of Intrinsic Microporosity , 2020 .

[11]  I. Pinnau,et al.  Facile synthesis and gas transport properties of Hünlich's base-derived intrinsically microporous polyimides , 2020, Polymer.

[12]  Xiaohua Ma,et al.  Synthesis and gas separation properties of OH-functionalized Tröger's base-based PIMs derived from 1,1′-binaphthalene-2,2′-OH , 2020 .

[13]  A. Fuoco,et al.  Effect of Bridgehead Methyl Substituents on the Gas Permeability of Tröger’s-Base Derived Polymers of Intrinsic Microporosity , 2020, Membranes.

[14]  Xiaohua Ma,et al.  Enhanced Gas Separation Properties of Tröger’s Base Polymer Membranes Derived from Pure Triptycene Diamine Regioisomers , 2020, Macromolecules.

[15]  Lei Wu,et al.  Polymers of Intrinsic Microporosity Having Bulky Substitutes and Cross-Linking for Gas Separation Membranes , 2020 .

[16]  A. Fuoco,et al.  Correlating Gas Permeability and Young’s Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy , 2019, Industrial & Engineering Chemistry Research.

[17]  Yan Xia,et al.  Tuning the Molecular Weights, Chain Packing, and Gas-Transport Properties of CANAL Ladder Polymers by Short Alkyl Substitutions , 2019, Macromolecules.

[18]  Caili Zhang,et al.  Preparation and Gas Separation Properties of Triptycene‐Based Microporous Polyimide , 2019, Macromolecular Chemistry and Physics.

[19]  T. Van Voorhis,et al.  Polymers with Side Chain Porosity for Ultrapermeable and Plasticization Resistant Materials for Gas Separations , 2019, Advanced materials.

[20]  P. Budd,et al.  Impeded physical aging in PIM-1 membranes containing graphene-like fillers , 2018, Journal of Membrane Science.

[21]  Tai‐Shung Chung,et al.  High-performance multiple-layer PIM composite hollow fiber membranes for gas separation , 2018, Journal of Membrane Science.

[22]  I. Pinnau,et al.  Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations , 2018, Materials Today Nano.

[23]  Neil B. McKeown,et al.  Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. , 2018, Chemical reviews.

[24]  P. Budd,et al.  First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1. , 2018, The journal of physical chemistry letters.

[25]  I. Pinnau,et al.  Effect of Film Thickness and Physical Aging on “Intrinsic” Gas Permeation Properties of Microporous Ethanoanthracene-Based Polyimides , 2018 .

[26]  T. Merkel,et al.  50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities , 2017 .

[27]  B. Freeman,et al.  Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1) , 2017 .

[28]  M. Ferrari,et al.  Polymer ultrapermeability from the inefficient packing of 2D chains. , 2017, Nature materials.

[29]  Christopher R. Mason,et al.  Effect of physical aging on the gas transport and sorption in PIM-1 membranes , 2017 .

[30]  I. Pinnau,et al.  Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading , 2016 .

[31]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[32]  J. R. Du,et al.  Thin film composite membranes comprising of polyamide and polydopamine for dehydration of ethylene glycol by pervaporation , 2015 .

[33]  I. Pinnau,et al.  Physical Aging, Plasticization and Their Effects on Gas Permeation in "Rigid" Polymers of Intrinsic Microporosity , 2015 .

[34]  S. Kentish,et al.  Tailoring Physical Aging in Super Glassy Polymers with Functionalized Porous Aromatic Frameworks for CO2 Capture , 2015 .

[35]  C. Doherty,et al.  Membranes with artificial free-volume for biofuel production , 2015, Nature Communications.

[36]  Y. Lee,et al.  Rigid and microporous polymers for gas separation membranes , 2015 .

[37]  Richard W. Baker,et al.  Gas Separation Membrane Materials: A Perspective , 2014 .

[38]  A. Cheetham,et al.  Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes , 2014, Nature Communications.

[39]  P. Budd,et al.  Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes , 2014 .

[40]  Aaron W Thornton,et al.  Ending aging in super glassy polymer membranes. , 2014, Angewandte Chemie.

[41]  Gabriele Clarizia,et al.  Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger's Base Polymers , 2014, Advanced materials.

[42]  Lin Hao,et al.  PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide , 2014 .

[43]  Christopher R. Mason,et al.  Enhancement of CO2 Affinity in a Polymer of Intrinsic Microporosity by Amine Modification , 2014, Macromolecules.

[44]  I. Pinnau,et al.  Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor , 2013 .

[45]  B. Freeman,et al.  Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .

[46]  F. Li,et al.  Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production , 2013 .

[47]  G. Bengtson,et al.  Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM) , 2013 .

[48]  Christopher R. Mason,et al.  Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8 , 2013 .

[49]  Youchang Xiao,et al.  UV‐Rearranged PIM‐1 Polymeric Membranes for Advanced Hydrogen Purification and Production , 2012 .

[50]  C. P. Ribeiro,et al.  Gas sorption and characterization of thermally rearranged polyimides based on 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) , 2012 .

[51]  Pei Li,et al.  Molecular engineering of PIM-1/Matrimid blend membranes for gas separation , 2012 .

[52]  I. Pinnau,et al.  Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity , 2012 .

[53]  S. Kawi,et al.  High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development , 2012 .

[54]  W. Koros,et al.  Responses of 6FDA-based polyimide thin membranes to CO2 exposure and physical aging as monitored by gas permeability , 2011 .

[55]  G. S. Larsen,et al.  Structural Characterization of a Polymer of Intrinsic Microporosity: X-ray Scattering with Interpretation Enhanced by Molecular Dynamics Simulations , 2011 .

[56]  G. Robertson,et al.  Polymers of Intrinsic Microporosity with Dinaphthyl and Thianthrene Segments , 2010 .

[57]  B. Freeman,et al.  Influence of previous history on physical aging in thin glassy polymer films as gas separation membranes , 2010 .

[58]  P. Budd,et al.  Highly permeable polymers for gas separation membranes , 2010 .

[59]  Naiying Du,et al.  Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity ( PIM-1 ) , 2012 .

[60]  B. Freeman,et al.  Physical aging of ultrathin glassy polymer films tracked by gas permeability , 2009 .

[61]  Aurelia W. Dong,et al.  Advanced fitting algorithms for analysing positron annihilation lifetime spectra , 2009 .

[62]  Jingshe Song,et al.  Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation , 2008 .

[63]  L. Robeson,et al.  The upper bound revisited , 2008 .

[64]  Chad L. Staiger,et al.  Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer , 2008 .

[65]  J. Lai,et al.  Effect of physical aging on the gas transport properties of poly(methyl methacrylate) membranes , 2007 .

[66]  W. Koros,et al.  Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes. Part 1. Without crosslinking , 2006 .

[67]  W. Koros,et al.  Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties , 2006 .

[68]  P. Budd,et al.  Free volume and intrinsic microporosity in polymers , 2005 .

[69]  S. Goh,et al.  A governing equation for physical aging of thick and thin fluoropolyimide films , 2004 .

[70]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[71]  T. Swager,et al.  Molecular Design of Free Volume as a Route to Low-κ Dielectric Materials , 2003 .

[72]  P. Mallon,et al.  Principles and Applications of Positron & Positronium Chemistry , 2003 .

[73]  V. Shantarovich,et al.  Positron Annihilation Lifetime Study of High and Low Free Volume Glassy Polymers: Effects of Free Volume Sizes on the Permeability and Permselectivity , 2000 .

[74]  R. Baker Membrane Technology and Applications , 1999 .

[75]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[76]  J. Kansy Microcomputer program for analysis of positron annihilation lifetime spectra , 1996 .

[77]  Y. Jean,et al.  Correlations between gas permeation and free‐volume hole properties probed by positron annihilation spectroscopy , 1995 .

[78]  Y. Jean,et al.  Free-Volume Hole Properties of Polymer Blends Probed by Positron Annihilation Spectroscopy: Miscibility , 1995 .

[79]  Y. Jean,et al.  Free-volume distributions of polystyrene probed by positron annihilation : comparison with free-volume theories , 1993 .

[80]  H. Nakanishi,et al.  Positron annihilation in amine‐cured epoxy polymers—pressure dependence , 1990 .

[81]  John N. Sherwood,et al.  The temperature dependence of positron lifetimes in solid pivalic acid , 1981 .

[82]  L. Struik,et al.  Physical aging in plastics and other glassy materials , 1977 .

[83]  S. J. Tao Positronium Annihilation in Molecular Substances , 1972 .

[84]  W. Brandt Model Calculation of the Temperature Dependence of Small Molecule Diffusion in High Polymers , 1959 .

[85]  P. Wadgaonkar,et al.  Synthesis, characterization, and gas permeation properties of adamantane‐containing polymers of intrinsic microporosity , 2018 .

[86]  A. Mohammad,et al.  Nanofiltration membranes review: Recent advances and future prospects , 2015 .

[87]  S. Picken,et al.  Positron annihilation lifetime spectroscopy for measuring free volume during physical aging of polycarbonate , 2003 .