Parameterized Complexity of the Smallest Degree-Constrained Subgraph Problem

In this paper we study the problem of finding an induced subgraphof size at most k with minimum degree at least d for a given graphG, from the parameterized complexity perspective. We call this problemMinimum Subgraph of Minimum Degree ≥d (MSMDd). For d = 2 itcorresponds to finding a shortest cycle of the graph. Our main motivationto study this problem is its strong relation to Dense k-Subgraphand Traffic Grooming problems. First, we show that MSMSd is fixed-parameter intractable (providedFPT ≠ W[1]) for d ≥ 3 in general graphs, by showing it to be W[1]-hardusing a reduction from Multi-Color Clique. In the second part of thepaper we provide explicit fixed-parameter tractable (FPT) algorithmsfor the problem in graphs with bounded local tree-width and graphswith excluded minors, faster than those coming from the meta-theorem of Frick and Grohe [13] about problems definable in first order logicover "locally tree-decomposable structures". In particular, this impliesfaster fixed-parameter tractable algorithms in planar graphs, graphs ofbounded genus, and graphs with bounded maximum degree.

[1]  Stéphane Pérennes,et al.  Hardness and Approximation of Traffic Grooming , 2007, ISAAC.

[2]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[3]  Jochen Könemann,et al.  Approximation Algorithms For Minimum-Cost Low-Degree Subgraphs , 2003 .

[4]  Uriel Feige,et al.  The Dense k -Subgraph Problem , 2001, Algorithmica.

[5]  Subhash Khot Ruling Out PTAS for Graph Min-Bisection, Densest Subgraph and Bipartite Clique , 2004, FOCS.

[6]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[7]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[8]  Reid Andersen Finding large and small dense subgraphs , 2007, ArXiv.

[9]  Stephan Kreutzer,et al.  Locally Excluding a Minor , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[10]  Paul D. Seymour,et al.  Graph Minors: XVII. Taming a Vortex , 1999, J. Comb. Theory, Ser. B.

[11]  Ken-ichi Kawarabayashi,et al.  Algorithmic graph minor theory: Decomposition, approximation, and coloring , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[12]  Michael R. Fellows,et al.  On the Fixed-Parameter Intractability and Tractability of Multiple-Interval Graph Problems , 2007 .

[13]  R. Ravi,et al.  Approximation algorithms for finding low-degree subgraphs , 2004, Networks.

[14]  Michel X. Goemans,et al.  Minimum Bounded Degree Spanning Trees , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[15]  George N. Rouskas,et al.  Traffic grooming in WDM networks: past and future , 2002, IEEE Netw..

[16]  Michael R. Fellows,et al.  Connected Coloring Completion for General Graphs: Algorithms and Complexity , 2007, COCOON.

[17]  Martin Grohe,et al.  Deciding first-order properties of locally tree-decomposable structures , 2000, JACM.

[18]  Erik D. Demaine,et al.  Equivalence of local treewidth and linear local treewidth and its algorithmic applications , 2004, SODA '04.

[19]  Martin Grohe Local Tree-Width, Excluded Minors, and Approximation Algorithms , 2003, Comb..

[20]  Didier Arquès,et al.  Énumération des cartes pointées sur une surface orientable de genre quelconque en fonction des nombres de sommets et de faces , 1999, J. Comb. Theory, Ser. B.