The Complexity of Approximation PSPACE-Complete Problems for Hierarchical Specifications

We extend the concept of polynomial time approximation algorithms to apply to problems for hierarchically specified graphs, many of which are PSPACE-complete. We present polynomial time approximation algorithms for several standard PSPACE-hard problems considered in the literature. In contrast, we prove that finding e-approximations for any e > 0, for several other problems when the instances are specified hierarchically, is PSPACE-hard. We present polynomial time approximation algorithms for the following problems when the graphs are specified hierarchically: minimum vertex cover, maximum 3SAT, weighted max cut, minimum maximal matching, and bounded degree maximum independent set.In contrast, we show that for any e > 0, obtaining e-approximations for the following problems when the instances are specified hierarchically is PSPACE-hard: the number of true gates in a monotone acyclic circuit when all input values are specified and the optimal value of the objective function of a linear program. It is also shown that obtaining a performance guarantee of less than 2 is PSPACE-hard for the following problems when the instances are specified hierarchically: high degree subgraph, k-vertex connected subgraph and k-edge connected subgraph.

[1]  Maria J. Serna,et al.  Approximating Linear Programming is Log-Space Complete for P , 1991, Inf. Process. Lett..

[2]  Thomas Lengauer,et al.  Efficient Solution of Connectivity Problems on Hierarchically Defined Graphs , 1988, SIAM J. Comput..

[3]  Jeffrey D. Ullman,et al.  Principles of database and knowledge-base systems, Vol. I , 1988 .

[4]  Thomas Lengauer,et al.  The complexity of compacting hierarchically specified layouts of integrated circuits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[5]  Mihalis Yannakakis,et al.  On the approximation of maximum satisfiability , 1992, SODA '92.

[6]  Joan Feigenbaum,et al.  Probabilistically checkable debate systems and approximation algorithms for PSPACE-hard functions , 1993, STOC.

[7]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[8]  Avi Wigderson,et al.  Succinct Representations of Graphs , 1984, Inf. Control..

[9]  Michael Luby A Simple Parallel Algorithm for the Maximal Independent Set Problem , 1986, SIAM J. Comput..

[10]  Hana Galperin Succinct representation of graphs , 1982 .

[11]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[12]  Harry B. Hunt,et al.  Approximation schemes for PSPACE-complete problems for succinct specifications (preliminary version) , 1994, STOC '94.

[13]  Richard M. Karp,et al.  A fast parallel algorithm for the maximal independent set problem , 1984, STOC '84.

[14]  Fred S. Roberts,et al.  Applied Combinatorics , 1984 .

[15]  Venkatesh Radhakrishnan Sequential and parallel algorithms for treewidth-bounded, planar and hierarchically specified combinatorial problems , 1993 .

[16]  Thomas Lengauer,et al.  The Correlation between the Complexities of the Nonhierarchical and Hierarchical Versions of Graph Problems , 1987, Journal of computer and system sciences (Print).

[17]  Thomas Lengauer,et al.  Efficient Algorithms for Finding Minimum Spanning Forests of Hierarchically Defined Graphs , 1987, J. Algorithms.

[18]  Harry B. Hunt,et al.  The Complexity of Processing Hierarchical Specifications , 1993, SIAM J. Comput..

[19]  P. Spirakis,et al.  The parallel complexity of the subgraph connectivity problem , 1989, 30th Annual Symposium on Foundations of Computer Science.

[20]  Thomas Lengauer,et al.  Efficient decision procedures for graph properties on context-free graph languages , 1993, JACM.

[21]  Paul G. Spirakis,et al.  Fast Parallel Approximations of hte Maximum Weighted Cut Problem through Derandomization , 1989, FSTTCS.

[22]  Thomas Lengauer,et al.  Processing of Hierarchically Defined Graphs and Graph Families , 1992, Data Structures and Efficient Algorithms.

[23]  Richard M. Karp,et al.  A fast parallel algorithm for the maximal independent set problem , 1985, JACM.

[24]  Madhav V. Marathe Complexity and approximability of NP- and pspace-hard optimization problems , 1995 .

[25]  Thomas Lengauer,et al.  Exploiting Hierarchy in VLSI Design , 1986, Aegean Workshop on Computing.

[26]  Harry B. Hunt,et al.  Hierarchical Specified Unit Disk Graphs (Extended Abstract) , 1993, WG.

[27]  Jeffrey D. Ullman,et al.  Principles Of Database And Knowledge-Base Systems , 1979 .

[28]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[29]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[30]  Thomas Lengauer,et al.  The Correlation between the Complexities of the Nonhierarchical and Hierarchical Versions of Graph Problems , 1987, J. Comput. Syst. Sci..

[31]  K. Wagner,et al.  The Complexity of Problems Concerning Graphs with Regularities (Extended Abstract) , 1984, MFCS.

[32]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[33]  Mark A. Williams,et al.  Efficient processing of hierarchical graphs , 1990 .

[34]  György Turán,et al.  On the succinct representation of graphs , 1984, Discret. Appl. Math..

[35]  Thomas Lengauer,et al.  Hierarchical planarity testing algorithms , 1989, JACM.

[36]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .