Space-Time Reference with an Optical Link

We describe a method for realizing a high-performance Space-Time Reference (STR) using a stable atomic clock in a precisely defined orbit and synchronizing the orbiting clock to high-accuracy atomic clocks on the ground. The synchronization would be accomplished using a two-way lasercom link between ground and space. The basic concept is to take advantage of the highest-performance cold-atom atomic clocks at national standards laboratories on the ground and to transfer that performance to an orbiting clock that has good stability and that serves as a "frequency-flywheel" over time-scales of a few hours. The two-way lasercom link would also provide precise range information and thus precise orbit determination (POD). With a well-defined orbit and a synchronized clock, the satellite cold serve as a high-accuracy Space-Time Reference, providing precise time worldwide, a valuable reference frame for geodesy, and independent high-accuracy measurements of GNSS clocks. With reasonable assumptions, a practical system would be able to deliver picosecond timing worldwide and millimeter orbit determination.

[1]  F. Heine,et al.  LCT for the European data relay system: in orbit commissioning of the Alphasat and Sentinel 1A LCTs , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[2]  D. Massonnet,et al.  The ACES/PHARAO space mission , 2015 .

[3]  E. Peik,et al.  Frequency Comparison of $^{171}{\text {Yb}}^+$ Ion Optical Clocks at PTB and NPL via GPS PPP , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[4]  K. V. Tilburg,et al.  Searching for dilaton dark matter with atomic clocks , 2014, 1405.2925.

[5]  Michel Abgrall,et al.  Contributing to TAI with a secondary representation of the SI second , 2014, 1401.7976.

[6]  Oleg V. Sindiy,et al.  Achieving operational two-way laser acquisition for OPALS payload on the International Space Station , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[7]  Victor Zhang,et al.  Long-term uncertainty in time transfer using GPS and TWSTFT techniques , 2015, 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum.

[8]  Scott A. Diddams,et al.  Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level , 2004, Science.

[9]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[10]  Jun Amagai,et al.  Carrier-phase TWSTFT experiments using the ETS-VIII satellite , 2013 .

[11]  P. Jetzer,et al.  STE-QUEST—test of the universality of free fall using cold atom interferometry , 2013, 1312.5980.

[12]  Young-Jin Kim,et al.  Testing of a femtosecond pulse laser in outer space , 2014, Scientific Reports.

[13]  F. Vernotte,et al.  Stability variances: a filter approach , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  Hamid Hemmati,et al.  10-Gb/s lasercom system for spacecraft , 2012, Other Conferences.

[15]  Hugo Bergeron,et al.  Synchronization of Distant Optical Clocks at the Femtosecond Level , 2015, 1509.07888.

[16]  E. C. Pavlis,et al.  High‐accuracy zenith delay prediction at optical wavelengths , 2004 .

[17]  Paul Berceau,et al.  LASER TIME-TRANSFER AND SPACE-TIME REFERENCE IN ORBIT , 2014 .

[18]  Judah Levine,et al.  Invited review article: The statistical modeling of atomic clocks and the design of time scales. , 2012, The Review of scientific instruments.

[19]  Gregory L. Weaver,et al.  Atomic Clocks and Oscillators for Deep-Space Navigation and Radio Science , 2007, Proceedings of the IEEE.

[20]  John J. Degnan Laser Transponders for High-Accuracy Interplanetary Laser Ranging and Time Transfer , 2008 .

[21]  G. Perruchoud,et al.  Development of the Space active Hydrogen Maser for the ACES Mission , 2010, EFTF-2010 24th European Frequency and Time Forum.

[22]  Anthony Bercy,et al.  Frequency and time transfer for metrology and beyond using telecommunication network fibres , 2015 .

[23]  Yasuhiro Takahashi,et al.  Demonstration Experiments of a Remote Synchronization System of an Onboard Crystal Oscillator Using “MICHIBIKI” , 2013 .

[24]  E. Peik,et al.  Frequency comparison of ${}^{171}$Yb${}^+$ ion optical clocks at PTB and NPL via GPS PPP , 2015, 1507.04754.

[25]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[26]  Sergei A. Klioner,et al.  Geodesy and relativity , 2008 .

[27]  Flavien Mercier,et al.  Orbit determination for next generation space clocks , 2007, 0708.2387.

[28]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[29]  Oliver Montenbruck,et al.  TerraSAR-X Precise Trajectory Estimation and Quality Assessment , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[30]  P. Guillemot,et al.  Time transfer by laser link: a complete analysis of the uncertainty budget , 2015 .

[31]  T. Hänsch,et al.  A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place , 2012, Science.

[32]  Bryan S. Robinson,et al.  Overview and results of the Lunar Laser Communication Demonstration , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[33]  T. Murphy Lunar laser ranging: the millimeter challenge , 2013, Reports on progress in physics. Physical Society.

[34]  Krzysztof Sośnica,et al.  A consistent combination of GNSS and SLR with minimum constraints , 2015, Journal of Geodesy.

[35]  Geoffrey Blewitt,et al.  Terrestrial reference frame NA12 for crustal deformation studies in North America , 2013 .

[36]  Peter Wolf,et al.  Analysis of Sun/Moon gravitational redshift tests with the STE-QUEST space mission , 2015, 1509.02854.

[37]  Y. Bar-Sever,et al.  GEODETIC REFERENCE ANTENNA IN SPACE ( GRASP ) – A MISSION TO ENHANCE SPACE-BASED GEODESY , 2009 .

[38]  S. Capozziello,et al.  Quantum tests of the Einstein Equivalence Principle with the STE–QUEST space mission , 2014, 1404.4307.

[39]  André Clairon,et al.  Lasers for coherent optical satellite links with large dynamics. , 2013, Applied optics.

[40]  G. Pucacco,et al.  Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE) , 2015 .

[41]  Oliver Montenbruck,et al.  GPS Based Relative Navigation , 2013 .

[42]  Anthony W. Yu,et al.  A dual format communication modem development for the Laser Communications Relay Demonstration (LCRD) program , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[43]  Jun Ye,et al.  Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10{-17}. , 2007, Physical review letters.

[44]  P. Steigenberger,et al.  Adjustable box-wing model for solar radiation pressure impacting GPS satellites , 2012 .

[45]  Bradley G. Boone,et al.  Optical communications development for spacecraft applications , 2004 .

[46]  G. Agrawal Fiber-Optic Communication Systems: Agrawal/Fiber-Optic , 2010 .

[47]  G. Panfilo,et al.  A theoretical and experimental analysis of frequency transfer uncertainty, including frequency transfer into TAI , 2010 .

[48]  Measurement of the Shapiro Time Delay Between Drag-Free Spacecraft , 2008 .

[49]  Sang K. Chung,et al.  Progress on small mercury ion clock for space applications , 2009, 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum.

[50]  A. Aurisano,et al.  Precision measurement of the speed of propagation of neutrinos using the MINOS detectors , 2015, 1507.04328.

[51]  N. Newbury,et al.  Coherent transfer of an optical carrier over 251 km. , 2007, Optics letters.

[52]  Claus Lämmerzahl,et al.  Lasers, Clocks and Drag-Free Control , 2008 .

[53]  P. Jetzer,et al.  Corrigendum: STE-QUEST—test of the universality of free fall using cold atom interferometry (2014 Class. Quantum Grav. 31 115010) , 2014 .

[54]  Uwe Sterr,et al.  Noise and instability of an optical lattice clock , 2015, 1507.04949.

[55]  Badr N. Alsuwaidan,et al.  Gravity Probe B: final results of a space experiment to test general relativity. , 2011, Physical review letters.

[56]  Hamid Hemmati,et al.  Advancing tests of relativistic gravity via laser ranging to Phobos , 2010, 1003.4961.

[57]  R. Nelson,et al.  Relativistic time transfer in the vicinity of the Earth and in the solar system , 2011 .

[58]  M. Pospelov,et al.  Hunting for topological dark matter with atomic clocks , 2013, Nature Physics.

[59]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[60]  Esther Baumann,et al.  Optical two-way time and frequency transfer over free space , 2013 .

[61]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[62]  B. Wang,et al.  Precise and Continuous Time and Frequency Synchronisation at the 5×10-19 Accuracy Level , 2012, Scientific Reports.

[63]  Jorma Jokela,et al.  The upgraded PTB 600 m baseline: a high-accuracy reference for the calibration and the development of long distance measurement devices , 2012 .

[64]  K. Birnbaum,et al.  Active laser ranging over planetary distances with millimeter accuracy , 2013 .

[65]  Hamid Hemmati Deep Space Optical Communications: Hemmati/Deep , 2006 .

[66]  Rolf Meyer,et al.  Coherent inter-satellite and satellite-ground laser links , 2011, LASE.

[67]  K. Djerroud,et al.  A coherent optical link through the turbulent atmosphere , 2010, EFTF-2010 24th European Frequency and Time Forum.

[68]  S. Stulz,et al.  High spectral density long-haul 40-Gb/s transmission using CSRZ-DPSK format , 2004, Journal of Lightwave Technology.

[69]  Etienne Samain,et al.  Time Transfer by Laser Link: Data analysis and validation to the ps level , 2014 .

[70]  U Johann,et al.  Invited article: advanced drag-free concepts for future space-based interferometers: acceleration noise performance. , 2014, The Review of scientific instruments.

[71]  Francine Vannicola,et al.  GPS Block IIF Atomic Frequency Standard Analysis , 2010 .

[72]  Gerard Petit,et al.  Relativistic theory for time comparisons: a review , 2005 .

[73]  Y. Bar-Sever,et al.  The Geodetic Reference Antenna in Space (GRASP) Mission Concept , 2009 .

[74]  Fabio Stefani,et al.  Cascaded optical fiber link using the internet network for remote clocks comparison. , 2015, Optics express.

[75]  Don M. Boroson,et al.  Prospects for Improvement of Interplanetary Laser Communication Data Rates by 30 dB , 2007, Proceedings of the IEEE.

[76]  J. Laskar,et al.  Quantum physics exploring gravity in the outer solar system: the SAGAS project , 2007, 0711.0304.

[77]  John L. Hall,et al.  Measurement of gravitational time delay using drag-free spacecraft and an optical clock , 2009, Proceedings of the International Astronomical Union.

[78]  Esther Baumann,et al.  Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer , 2014 .

[79]  R. Holzwarth,et al.  Einstein Gravity Explorer–a medium-class fundamental physics mission , 2009 .

[80]  K. Gibble,et al.  Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2 , 2011, 1110.2590.

[81]  Jon H. Shirley,et al.  First accuracy evaluation of NIST-F2 , 2014 .

[82]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[83]  M Updegraff ON THE MEASUREMENT OF TIME. , 1902, Science.

[84]  B. Bertotti,et al.  Accurate light-time correction due to a gravitating mass , 2009, 0912.2705.

[85]  M. Toyoshima,et al.  Results from Phase-1, Phase-2 and Phase-3 Kirari Optical Communication Demonstration Experiments with the NICT optical ground station (KODEN) , 2007 .

[86]  M. Murböck,et al.  Feasibility Study of a Future Satellite Gravity Mission Using GEO-LEO Line-of-Sight Observations , 2014 .

[87]  Hamid Hemmati,et al.  Deep space optical communications , 2006 .

[88]  M. Pavone,et al.  HIGH-FIDELITY MODELING AND CONTROL SYSTEM SYNTHESIS FOR A DRAG-FREE MICROSATELLITE , 2016 .

[89]  F. Emma,et al.  The onboard galileo rubidium and passive maser, status & performance , 2005, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[90]  Marco Pizzocaro,et al.  An Atomic Clock with 10–¹⁸ Instability , 2013 .

[91]  P. Delva,et al.  Time and frequency transfer with a MicroWave Link in the ACES/PHARAO mission , 2012, 2012 European Frequency and Time Forum.

[92]  R. Decher,et al.  Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .

[93]  Fabio Stefani,et al.  Two-way optical frequency comparisons at 5*10^-21 relative stability over 100-km telecommunication network fibers , 2014 .

[94]  Neil Ashby,et al.  Relativity in the Global Positioning System , 2003, Living reviews in relativity.

[95]  R. Holzwarth,et al.  The space optical clocks project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems , 2012, 2012 European Frequency and Time Forum.