Investigation of Energy‐Relevant Materials with Synchrotron X‐Rays and Neutrons

Many materials used for energy conversion have a complex structure and chemical composition, knowledge of which is important for both understanding the function of materials and energy conversion systems and for their further development. Synchrotron radiation and neutrons can make an important contribution to understanding the function of such systems. Taking examples from the fields of fuel cells, gas separation membranes, batteries, solar cells, and catalysts, the use of radiography, tomography, diffraction, scattering, and absorption edge spectroscopy is demonstrated. The strength of such methods is the in situ characterization of processes and compositions, and so the focus is on these aspects.

[1]  Combined local current distribution measurements and high resolution neutron radiography of operating Direct Methanol Fuel Cells , 2009 .

[2]  Anzhong Gu,et al.  Three dimensional, two phase flow mathematical model for PEM fuel cell: Part I. Model development , 2004 .

[3]  O. Bunk,et al.  Neutron decoherence imaging for visualizing bulk magnetic domain structures. , 2008, Physical review letters.

[4]  Jun Chen,et al.  High‐Power Alkaline Zn–MnO2 Batteries Using γ‐MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder , 2005 .

[5]  Daniel S. Hussey,et al.  New neutron imaging facility at the NIST , 2005 .

[6]  U. Wagner,et al.  Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack , 2004 .

[7]  J. Barker,et al.  Protonic conduction and 1H self-diffusion in nafion film studied by ac conductivity and pulsed field gradient NMR techniques , 1989 .

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  J. Banhart,et al.  Combined neutron radiography and locally resolved current density measurements of operating PEM fuel cells , 2008 .

[10]  John Banhart,et al.  High-resolution in-plane investigation of the water evolution and transport in PEM fuel cells , 2009 .

[11]  Jürgen Schumacher,et al.  Two-Phase Dynamic Modeling of PEMFCs and Simulation of Cyclo-Voltammograms , 2005 .

[12]  Elizabeth J. Podlaha,et al.  Modeling of Cylindrical Alkaline Cells VII . A Wound Cell Model , 1994 .

[13]  P. Bogdanoff,et al.  On the structure of carbon-supported selenium-modified ruthenium nanoparticles as electrocatalysts for oxygen reduction in fuel cells. , 2007, Angewandte Chemie.

[14]  M. Ch. Lux-Steiner,et al.  Sulphurisation of gallium-containing thin-film precursors analysed in-situ , 2007 .

[15]  H. Tributsch,et al.  Surface Modified Ruthenium Nanoparticles: Structural Investigation and Surface Analysis of a Novel Catalyst for Oxygen Reduction , 2007 .

[16]  Simon Zabler,et al.  High-resolution tomography of cracks, voids and micro-structure in greywacke and limestone , 2008 .

[17]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[18]  Thomas A. Trabold,et al.  In situ investigation of water transport in an operating PEM fuel cell using neutron radiography: Part 2 – Transient water accumulation in an interdigitated cathode flow field , 2006 .

[19]  Simon Zabler,et al.  In situ investigation of the discharge of alkaline Zn–MnO2 batteries with synchrotron x-ray and neutron tomographies , 2007 .

[20]  P. Midgley,et al.  Electron tomography and holography in materials science. , 2009, Nature materials.

[21]  B. Marsen,et al.  Recrystallization of Cu–In–S thin films studied in situ by energy‐dispersive X‐ray diffraction , 2010 .

[22]  N. Kardjilov,et al.  Estimation of water flow velocity in small plants using cold neutron imaging with D2O tracer , 2009 .

[23]  Reiner Klenk,et al.  Efficient CuInS2 solar cells from a rapid thermal process (RTP) , 2001 .

[24]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[25]  J. Banhart,et al.  Investigation of soot sediments in particulate filters and engine components , 2009 .

[26]  Alexander Wokaun,et al.  In Situ Investigation of Two‐Phase Flow Patterns in Flow Fields of PEFC’s Using Neutron Radiography , 2002 .

[27]  Volker Schmidt,et al.  Stochastic 3D Modeling of the GDL Structure in PEMFCs Based on Thin Section Detection , 2008 .

[28]  Werner Lehnert,et al.  Quasi–in situ neutron tomography on polymer electrolyte membrane fuel cell stacks , 2007 .

[29]  H. Schock,et al.  Growth paths for the sulfurization of Cu-rich Cu/In thin films , 2009 .

[30]  Axel Lange,et al.  Wasserverteilung in PEM-Brennstoffzellen , 2009 .

[31]  T. Nguyen,et al.  Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell , 2004 .

[32]  N. Kardjilov,et al.  Wavelength tunable device for neutron radiography and tomography , 2006 .

[33]  Hochortsauflösendes, großflächiges Neutronen-Detektorsystem für die Brennstoffzellenforschung , 2010 .

[34]  H. Schock,et al.  Pressure-dependent real-time investigations on the rapid thermal sulfurization of Cu-In thin films , 2008 .

[35]  Chao-Yang Wang,et al.  Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell , 2004 .

[36]  Nikolay Kardjilov,et al.  Observation of Magnetic Domains in Insulation-Coated Electrical Steels by Neutron Dark-Field Imaging , 2010 .

[37]  Visualization of water usage and photosynthetic activity of street trees exposed to 2 ppm of SO2—A combined evaluation by cold neutron and chlorophyll fluorescence imaging , 2009 .

[38]  Wei-Mon Yan,et al.  Effective schemes to control the dynamic behavior of the water transport in the membrane of PEM fuel cell , 2005 .

[39]  J. Banhart,et al.  In situ Synchrotron X‐ray Radiography Investigations of Water Transport in PEM Fuel Cells , 2009 .

[40]  I. Manke,et al.  Direct Accessing the Nanostructure of Carbon Supported Ru-Se Based Catalysts by ASAXS , 2010 .

[41]  W. Reimers,et al.  Neutrons and synchrotron radiation in engineering materials science : from fundamentals to material and component characterization , 2008 .

[42]  Axel Lange,et al.  Charakterisierung von Katalysatormaterialien für Brennstoffzellen mittels Elektronentomografie , 2010 .

[43]  P. Boesecke,et al.  Analysis of nanostructure and nanochemistry by ASAXS: Accessing phase composition of oxyfluoride glass ceramics doped with Er 3 + / Yb 3 + , 2010 .

[44]  David L. Jacobson,et al.  In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells , 2004 .

[45]  J. Banhart,et al.  In-situ synchrotron X-ray radiography on high temperature polymer electrolyte fuel cells , 2010 .

[46]  R. Scheer,et al.  Solar cells based on CuInS 2an overview , 2005 .

[47]  Trung Van Nguyen,et al.  Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell , 2003 .

[48]  John Banhart,et al.  Three-dimensional imaging of magnetic fields with polarized neutrons , 2008 .

[49]  Nathan P. Siegel,et al.  In Situ High-Resolution Neutron Radiography of Cross-Sectional Liquid Water Profiles in Proton Exchange Membrane Fuel Cells , 2008 .

[50]  Burkhard Schillinger,et al.  3D neutron computed tomography: requirements and applications , 2000 .

[51]  Kirk W Feindel,et al.  Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy. , 2006, Journal of the American Chemical Society.

[52]  Chaoyang Wang,et al.  Visualization of Liquid Water Transport in a PEFC , 2004 .

[53]  P. Böni,et al.  A polarizing neutron periscope for neutron imaging , 2009 .

[54]  G. Goerigk,et al.  In Situ Anomalous Small-Angle X-ray Scattering Investigation of Carbon-Supported Electrocatalysts , 1997 .

[55]  N. Djilali,et al.  Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers , 2007 .

[56]  Jack S. Brenizer,et al.  Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging , 2006 .

[57]  Partha P. Mukherjee,et al.  Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells , 2007 .

[58]  D. Wilkinson,et al.  Aging mechanisms and lifetime of PEFC and DMFC , 2004 .

[59]  B. Brandt,et al.  Neutron spin phase imaging , 2008 .

[60]  N. Alonso‐Vante,et al.  Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction , 1994 .

[61]  Jin Hyun Nam,et al.  Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium , 2003 .

[62]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[63]  K. Wippermann,et al.  Preparation of Carbon Supported Ru-Se Based Catalysts and their Electrochemical Performance in DMFC Cathodes , 2006 .

[64]  Bernd R. Müller,et al.  Wassermanagement in Brennstoffzellen — die Bedeutung von hochauflösenden zerstörungsfreien Untersuchungsmethoden , 2008 .

[65]  Imaging with polarized neutrons , 2009 .

[66]  Chao-Yang Wang,et al.  In situ water distribution measurements in a polymer electrolyte fuel cell , 2003 .

[67]  Y. Shao-horn,et al.  Morphology and Spatial Distribution of ZnO Formed in Discharged Alkaline Zn / MnO2 AA Cells , 2003 .

[68]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[69]  John Banhart,et al.  Revealing microstructural inhomogeneities with dark-field neutron imaging , 2010 .

[70]  P. Cloetens,et al.  Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays , 1999 .

[71]  J. Banhart,et al.  Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells , 2008 .

[72]  A. Verkleij,et al.  Electron tomography for heterogeneous catalysts and related nanostructured materials. , 2009, Chemical reviews.

[73]  Manuela Klaus,et al.  The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis , 2007 .

[74]  R. Scheer,et al.  CuInS2 based thin film photovoltaics , 2004 .

[75]  D. Hariskos,et al.  Highly efficient CIS solar cells and modules made by the co-evaporation process , 2009 .

[76]  Werner Lehnert,et al.  Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiography , 2007 .

[77]  Axel Lange,et al.  Improved Computed Tomography by Variable Desmearing , 2010 .

[78]  X. Wang,et al.  ASAXS studies of carbon supported electrocatalysts , 1995 .

[79]  P. Pani,et al.  GEMS: Underwater spectrometer for long-term radioactivity measurements , 2011 .

[80]  P. Bogdanoff,et al.  Structural Investigation of Carbon Supported Ru-Se Based Catalysts using Anomalous Small Angle X-Ray Scattering , 2008 .

[81]  Maher Development of viscous fingering patterns. , 1985, Physical review letters.

[82]  Imaging with polarized neutrons , 2009 .

[83]  D. Fish,et al.  Compact mixed-reactant fuel cells , 2002 .

[84]  W. Lehnert,et al.  Current distribution mapping in polymer electrolyte fuel cells—A finite element analysis of measurement uncertainty imposed by lateral currents , 2006 .

[85]  Magnetic field induced differential neutron phase contrast imaging , 2007 .

[86]  J. Banhart,et al.  New trends in neutron imaging , 2009 .

[87]  The influence of gas diffusion layer wettability on direct methanol fuel cell performance: A combined local current distribution and high resolution neutron radiography study , 2010 .

[88]  M. Mansuetto,et al.  In Situ Raman Spectroscopy on an Operating AA Zn ‐ MnO2 Battery under High Discharge Currents , 1999 .

[89]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[90]  O. Lyon,et al.  Anomalous small-angle X-ray scattering in materials science , 2003 .

[91]  John Banhart,et al.  X-ray and neutron imaging – Complementary techniques for materials science and engineering , 2010 .

[92]  Chao-Yang Wang,et al.  Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography , 2006 .

[93]  S Bals,et al.  3D Imaging of Nanomaterials by Discrete Tomography , 2006, Microscopy and Microanalysis.

[94]  Jack S. Brenizer,et al.  Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging , 2005 .

[95]  Heinrich Riesemeier,et al.  BAMline: the first hard X-ray beamline at BESSY II , 2001 .

[96]  Alan K. Thompson,et al.  Neutron Imaging Technique for In Situ Measurement of Water Transport Gradients within Nafion in Polymer Electrolyte Fuel Cells , 1999 .

[97]  Chaoyang Wang,et al.  Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells , 2005 .

[98]  J. Banhart,et al.  Neutron tomography using an elliptic focusing guide , 2010 .

[99]  Feng-Yuan Zhang,et al.  Liquid Water Removal from a Polymer Electrolyte Fuel Cell , 2006 .

[100]  J. Banhart,et al.  Characterization of water exchange and two-phase flow in porous gas diffusion materials by hydrogen-deuterium contrast neutron radiography , 2008 .

[101]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging , 2004 .

[102]  K. Kordesch,et al.  Improvements of the Rechargeable Alkaline MnO2 ‐ Zn Cell , 1996 .

[103]  Chao-Yang Wang,et al.  A multiphase mixture model for multiphase, multicomponent transport in capillary porous media—I. Model development , 1996 .

[104]  P. Boesecke,et al.  Composition fluctuations in the demixed supercooled liquid state of Zr41Ti14Cu12.5Ni10Be22.5: a combined ASAXS and SANS study , 2001 .

[105]  A. Wiedenmann,et al.  New SANS instrument at the BER II reactor in Berlin; Germany , 1995 .

[106]  Kirk W Feindel,et al.  In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy. , 2004, Journal of the American Chemical Society.

[107]  C. David,et al.  Three-dimensional imaging of magnetic domains. , 2010, Nature communications.

[108]  N. Kardjilov,et al.  Differential phase contrast and dark field neutron imaging , 2009 .

[109]  I. Manke,et al.  3D Visualisation of PEMFC Electrode Structures Using FIB Nanotomography , 2010 .

[110]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[111]  R. Klenk,et al.  Efficient thin-film solar cells prepared by a sequential process , 1998 .

[112]  S. Stock Recent advances in X-ray microtomography applied to materials , 2008 .

[113]  M. C. Nichols,et al.  X-Ray Tomographic Microscopy (XTM) Using Synchrotron Radiation , 1992 .

[114]  D. Papageorgopoulos,et al.  Reprint of “A study of RhxSy/C and RuSex/C as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications”☆ , 2007 .

[115]  J. Banhart,et al.  Investigation of the skin effect in the bulk of electrical conductors with spin-polarized neutron radiography , 2008 .

[116]  High resolution synchrotron X-ray investigation of carbon dioxide evolution in operating direct methanol fuel cells , 2009 .

[117]  Y. X. Wang,et al.  Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms , 2018 .

[118]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries during charge/discharge cycling , 2001 .

[119]  F. Pfeiffer,et al.  Neutron dark-field tomography. , 2008, Physical review letters.

[120]  Detlef Stolten,et al.  Analytical and Numerical Analysis of PEM Fuel Cell Performance Curves , 2005 .

[121]  Alexander Wokaun,et al.  In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging Part B. Material variations , 2006 .

[122]  J. Banhart,et al.  Industrial applications at the new cold neutron radiography and tomography facility of the HMI , 2005 .

[123]  N. Djilali,et al.  Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers , 2006 .

[124]  George M. Homsy,et al.  Viscous fingering in porous media , 1987 .

[125]  C. Hebling,et al.  Visualization of water buildup in the cathode of a transparent PEM fuel cell , 2003 .

[126]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[127]  Simon Zabler,et al.  Coarsening of grain-refined semi-solid Al-Ge32 alloy: X-ray microtomography and in situ radiography , 2007 .

[128]  Alexander Wokaun,et al.  In situ observation of the water distribution across a PEFC using high resolution neutron radiography , 2008 .

[129]  Eberhard Lehmann,et al.  Neutron tomography: Method and applications , 2006 .

[130]  Xianguo Li,et al.  Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding , 2000 .

[131]  John Banhart,et al.  Advances in neutron radiography and tomography , 2009 .

[132]  I. Manke,et al.  Local Structural Characteristics of Pore Space in GDLs of PEM Fuel Cells Based on Geometric 3D Graphs , 2009 .

[133]  Nikolay Kardjilov,et al.  High-resolution investigations of edge effects in neutron imaging , 2009 .

[134]  B. Wetton,et al.  Water Management in PEM Fuel Cells , 2004 .

[135]  I. Manke,et al.  MEASUREMENT METHODS | Structural Properties: Neutron and Synchrotron Imaging, In-Situ for Water Visualization , 2009 .

[136]  J. Haug,et al.  ASAXS study on the formation of core–shell Ag/Au nanoparticles in glass , 2009, Nanotechnology.