A Thin Film Approach to Engineering Functionality into Oxides

The broad spectrum of electronic and optical properties exhibited by oxides offers tremendous opportunities for microelectronic devices, especially when a combination of properties in a single device is desired. Here we describe the use of reactive molecular-beam epitaxy and pulsed-laser deposition to synthesize functional oxides, including ferroelectrics, ferromagnets, and materials that are both at the same time. Owing to the dependence of properties on direction, it is often optimal to grow functional oxides in particular directions to maximize their properties for a specific application. But these thin film techniques offer more than orientation control; customization of the film structure down to the atomic-layer level is possible. Numerous examples of the controlled epitaxial growth of oxides with perovskite and perovskite-related structures, including superlattices and metastable phases, are shown. In addition to integrating functional oxides with conventional semiconductors, standard semiconductor practices involving epitaxial strain, confined thickness, and modulation doping can also be applied to oxide thin films. Results of fundamental scientific importance as well as results revealing the tremendous potential of utilizing functional oxide thin films to create devices with enhanced performance are described.

[1]  A. Segmüller,et al.  Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films , 1988 .

[2]  Chang-Beom Eom,et al.  Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes , 1993 .

[3]  C. Mead,et al.  Permittivity of Strontium Titanate , 1972 .

[4]  Y. Jia,et al.  Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates , 2006 .

[5]  J. Chaloupka,et al.  Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. , 2008, Physical review letters.

[6]  G. Dormans,et al.  Modelling of organometallic chemical vapour deposition of lead titanate , 1995 .

[7]  R. Lamoreaux,et al.  High Temperature Vaporization Behavior of Oxides. I. Alkali Metal Binary Oxides , 1984 .

[8]  G. S. Lee,et al.  Low-loss substrate for epitaxial growth of high-temperature superconductor , 1988 .

[9]  P. W. Chapman,et al.  Electron Mobility in Semiconducting Strontium Titanate , 1967 .

[10]  Graham K. Hubler,et al.  Pulsed Laser Deposition , 1992 .

[11]  Leo Brewer,et al.  High‐Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg , 1987 .

[12]  Darrell G. Schlom,et al.  A Thermodynamic Approach to Selecting Alternative Gate Dielectrics , 2002 .

[13]  Y. J. Lee,et al.  Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications , 2005 .

[14]  H. Funakubo,et al.  Preparing Pb(Zr,Ti)O3 films less than 100nm thick by low-temperature metalorganic chemical vapor deposition , 2005 .

[15]  T. Makino,et al.  Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with “asymmetric” structure , 2002 .

[16]  C. Brandle,et al.  Growth of single crystals of lanthanum aluminate , 1991 .

[17]  D. Tenne,et al.  Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy , 2006, Science.

[18]  K. Ahn,et al.  Relationship Between Stoichiometry and Properties of EuO Films , 1970 .

[19]  V Gopalan,et al.  Magnetic color symmetry of lattice rotations in a diamagnetic material. , 2008, Physical review letters.

[20]  P. Fons,et al.  Molecular dynamics and quasidynamics simulations of low-energy ion/surface interactions leading to decreased epitaxial temperatures and increased dopant incorporation probabilities during Si MBE , 1991 .

[21]  U. V. Waghmare,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO 3 , 2005 .

[22]  D. Muller,et al.  Imaging the phase separation in atomically thin buried SrTiO(3) layers by electron channeling. , 2008, Physical review letters.

[23]  A. Schrott,et al.  A-site surface termination in strontium titanate single crystals , 2001 .

[24]  G. Dormans,et al.  Epitaxial PbTiO3 thin films grown by organometallic chemical vapor deposition , 1991 .

[25]  L. Bracke,et al.  A broadband magneto-electric transducer using a composite material , 1981 .

[26]  C. Brandle,et al.  Growth of single crystals of rare earth gallates , 1991 .

[27]  J. Zuo,et al.  Magnetically asymmetric interfaces in a LaMnO 3 /SrMnO 3 superlattice due to structural asymmetries , 2007, 0709.1715.

[28]  H. Koinuma,et al.  Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition , 1995 .

[29]  Andrew Zangwill,et al.  Structural transitions in epitaxial overlayers , 1986 .

[30]  Ramamoorthy Ramesh,et al.  Orienting Ferroelectric Films , 2002, Science.

[31]  D. Christen,et al.  Epitaxial superconducting thin films of YBa2Cu3O7−x on KTaO3 single crystals , 1989 .

[32]  Epitaxial Growth of PbTiO3on MgAl2O4/Si Substrates , 1985 .

[33]  R. Bruchhaus,et al.  Pyroelectric properties of lead titanate thin films deposited on pt-coated si wafers by multi-target sputtering , 1994 .

[34]  G. Trolliard,et al.  TEM study of cation-deficient-perovskite related AnBn−1O3n compounds: the twin-shift option , 2004 .

[35]  J. Eckstein,et al.  Molecular Beam Epitaxy of Single Crystal Colossal Magneto-Resistive Material , 1995 .

[36]  R. Waser,et al.  Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity , 2002 .

[37]  D. Norton,et al.  X-Ray Diffraction Measurement of the Effect of Layer Thickness on the Ferroelectric Transition in Epitaxial KTaO 3 / KNbO 3 Multilayers , 1998 .

[38]  X. Pan,et al.  Structural evolution of dislocation half-loops in epitaxial BaTiO3 thin films during high-temperature annealing , 2004 .

[39]  K. Iijima,et al.  Preparation of ferroelectric BaTiO3 thin films by activated reactive evaporation , 1990 .

[40]  R. Droopad,et al.  Hetero-epitaxy of perovskite oxides on GaAs(001) by molecular beam epitaxy , 2004 .

[41]  Robert A. York,et al.  High tunability barium strontium titanate thin films for rf circuit applications , 2004 .

[42]  P. Steeneken New light on EuO thin films , 2002 .

[43]  T. Yoshitake,et al.  Preferentially oriented epitaxial Y‐Ba‐Cu‐O films prepared by the ion beam sputtering method , 1988 .

[44]  G. Virshup,et al.  Accurate measurement of atomic beam flux by pseudo‐double‐beam atomic absorption spectroscopy for growth of thin‐film oxide superconductors , 1992 .

[45]  A. Tagantsev,et al.  Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films (vol 61, pg R825, 2000) , 2002 .

[46]  S. Trolier-McKinstry,et al.  Thermal expansion of the new perovskite substrates DyScO_3 and GdScO_3 , 2005 .

[47]  K. Müller,et al.  SrTi O 3 : An intrinsic quantum paraelectric below 4 K , 1979 .

[48]  A. Kinbara,et al.  Reactive molecular beam epitaxy , 1983 .

[49]  Horst Rogalla,et al.  Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide , 1998 .

[50]  Effect of oxygen on the chemical reactions and electron work function in Ba-Si and BaO-Si structures , 2001 .

[51]  R. Fleming,et al.  In situ epitaxial growth of Y1Ba2Cu3O7−x films by molecular beam epitaxy with an activated oxygen source , 1988 .

[52]  Anthony K. Cheetham,et al.  Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3 , 2002 .

[53]  Jim Horwitz,et al.  Pulsed Laser Deposition History and Laser-Target Interactions , 1992 .

[54]  H. Koinuma,et al.  A-site layer terminated perovskite substrate: NdGaO3 , 1999 .

[55]  Polarization instability in polydomain ferroelectric epitaxial thin films and the formation of heterophase structures , 1999, Physical review letters.

[56]  David E. Zelmon,et al.  Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon , 1991 .

[57]  T. Morishita,et al.  Preparation and Magnetic Properties of EuO Thin Films Epitaxially Grown on MgO and SrTiO 3 Substrates , 2000 .

[58]  K. Udayakumar,et al.  Structural Aspects of Phase Equilibria in the Strontium‐Titanium‐Oxygen System , 1988 .

[59]  Xiaoqing Pan,et al.  Epitaxial growth and properties of metastable BiMnO3 thin films , 2004 .

[60]  Masashi Kawasaki,et al.  Quantum Hall Effect in Polar Oxide Heterostructures , 2007, Science.

[61]  Jeffrey B. Neaton,et al.  First-principles study of symmetry lowering and polarization in BaTiO3/SrTiO3 superlattices with in-plane expansion , 2005 .

[62]  R. Newnham,et al.  Dielectric response in ferroelectric superlattices , 1997 .

[63]  Flynn Cp Strain-assisted epitaxial growth of new ordered compounds. , 1986 .

[64]  T. Geballe,et al.  No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor , 2003, Nature.

[65]  K. Rabe,et al.  Ab initio Study of the Phase Diagram of Epitaxial BaTiO3 , 2004 .

[66]  J. Schubert,et al.  Adsorption-controlled growth of EuO by molecular-beam epitaxy , 2008 .

[67]  Zhuang Li,et al.  Growth of high quality single‐domain single‐crystal films of PbTiO3 , 1994 .

[68]  Localized microwave resonances in strained SrTiO3 thin films , 2004, cond-mat/0412714.

[69]  N. Mōri,et al.  New superconducting cuprates in the Sr-Ca-Cu-O system , 1993 .

[70]  D. R. Terrell,et al.  An in situ grown eutectic magnetoelectric composite material , 1974 .

[71]  Darrell G. Schlom,et al.  Oxide nano-engineering using MBE , 2001 .

[72]  K. Rabe,et al.  Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures , 2004, Science.

[73]  E. Colla,et al.  Artificial dielectric superlattices with broken inversion symmetry. , 2003, Physical review letters.

[74]  S. Yamamichi,et al.  Interface Structure and Dielectric Properties of SrTiO 3 Thin Film Sputter-Deposited onto Si Substrates , 1990 .

[75]  R. Tilley An electron microscope study of perovskite-related oxides in the SrTiO system , 1977 .

[76]  S. N. Ruddlesden,et al.  The compound Sr3Ti2O7 and its structure , 1958 .

[77]  M. Kitabatake,et al.  Molecular dynamics and quasidynamics simulations of low‐energy particle bombardment effects during vapor‐phase crystal growth: Production and annihilation of defects due to 50 eV Si incident on (2×1)‐terminated Si(001) , 1993 .

[78]  J. Harris,et al.  6 – MBE Growth of High Tc Superconductors , 1995 .

[79]  B. Hyde,et al.  Inorganic Crystal Structures , 1989 .

[80]  G. H. Heilmeier,et al.  A ferroelectric field effect device , 1966 .

[81]  Toshimasa Suzuki,et al.  Fabrication of Barium Titanate/Strontium Titanate Artificial Superlattice by Atomic Layer Epitaxy , 1994 .

[82]  Y. Jia,et al.  Epitaxially stabilized growth of orthorhombic LuScO3 thin films , 2007 .

[83]  D. Schlom,et al.  Superconducting Thin Films: Materials, Preparation, and Properties , 2001 .

[84]  K. Tominaga,et al.  Preparation of c-Axis-Oriented PbTiO3 Thin Films by MOCVD under Reduced Pressure , 1989 .

[85]  R. A. Betts,et al.  Growth of thin-film lithium niobate by molecular beam epitaxy , 1985 .

[86]  Structural and dielectric properties of Sr$_{2}$TiO$_{4}$ from first principles , 2003, cond-mat/0305266.

[87]  J. Mitchell,et al.  Multiferroic composite ferroelectric-ferromagnetic films , 2005 .

[88]  J. Lettieri,et al.  High-K Candidates for Use as the Gate Dielectric in Silicon Mosfets , 2005 .

[89]  Y. Tokura,et al.  LaMnO3∕SrMnO3 interfaces with coupled charge-spin-orbital modulation , 2006 .

[90]  H. Rogalla,et al.  In-situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure , 1997 .

[91]  V. Gopalan,et al.  Probing domain microstructure in ferroelectric Bi 4 Ti 3 O 12 thin films by optical second harmonic generation , 2001 .

[92]  V. Gopalan,et al.  Phase transitions and domain structures in strained pseudocubic (100)SrTiO3thin films , 2006 .

[93]  H. Nasu,et al.  As-Grown Preparation of Superconducting Epitaxial Ba2YCu3Ox Thin Films Sputtered on Epitaxially Grown ZrO2/Si(100) , 1989 .

[94]  G. Dormans,et al.  Measurement of piezoelectric coefficients of ferroelectric thin films , 1994 .

[95]  Ramamoorthy Ramesh,et al.  Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering , 2006 .

[96]  Y. Bando,et al.  Well defined superlattice structures made by phase-locked epitary using RHEED intensity oscillations , 1985 .

[97]  J. L. Moll,et al.  A new solid state memory resistor , 1963 .

[98]  L. Freund,et al.  Thin Film Materials: Stress, Defect Formation and Surface Evolution , 2004 .

[99]  Jong-pil Kim,et al.  Growth and Characterization of (Ba0.5Sr0.5)TiO3 Films Epitaxially Grown on (002) GaN/(0006) Al2O3 Electrode , 2004 .

[100]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[101]  P. Lerch,et al.  Epitaxial growth of superconducting YBa2Cu3O7−x on Si(100) with CaF2 as intermediate buffer , 1992 .

[102]  J. Fukushima,et al.  Preparation of ferroelectric PZT films by thermal decomposition of organometallic compounds , 1984 .

[103]  B. Chai,et al.  Low‐loss substrate for microwave application of high‐temperature superconductor films , 1990 .

[104]  R. Katiyar,et al.  rf oxygen plasma assisted molecular beam epitaxy growth of BiFeO3 thin films on SrTiO3 (001) , 2007 .

[105]  J. Bravman,et al.  Molecular beam epitaxy of layered Dy-Ba-Cu-O compounds , 1988 .

[106]  Long-Qing Chen,et al.  A Phase Diagram for Epitaxial PbZr1−xTixO3 Thin Films at the Bulk Morphotropic Boundary Composition , 2005 .

[107]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[108]  W. R. Thurber,et al.  Electronic Transport in Strontium Titanate , 1964 .

[109]  G. Dormans,et al.  Chemical Vapor Deposition of Electroceramic Thin Films , 1996 .

[110]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[111]  Chu,et al.  Evidence for superconductivity above 40 K in the La-Ba-Cu-O compound system. , 1987, Physical review letters.

[112]  B. Veličkov,et al.  Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3 , 2007 .

[113]  Shenyang Y. Hu,et al.  Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films , 2002 .

[114]  Alexander G. Carver,et al.  Molecular beam epitaxy of complex metal-oxides: Where have we come, where are we going, and how are we going to get there? , 2005 .

[115]  D. Abraham,et al.  Properties of epitaxial chromium dioxide films grown by chemical vapor deposition using a liquid precursor , 2002 .

[116]  S. Gonda,et al.  Heteroepitaxial Growth of CeO2(001) Films on Si(001) Substrates by Pulsed Laser Deposition in Ultrahigh Vacuum , 1991 .

[117]  A. Malozemoff,et al.  High-temperature cuprate superconductors get to work , 2005 .

[118]  S. Phillpot,et al.  Ferroelectric phase transitions and dynamical behavior in KNbO3/KTaO3 superlattices by molecular-dynamics simulation , 2002 .

[119]  J. Moodera,et al.  Measuring the spin polarization of a metal with a superconducting point contact , 1998, Science.

[120]  Yang,et al.  Low-temperature growth of MgO by molecular-beam epitaxy. , 1990, Physical review. B, Condensed matter.

[121]  N. Newman,et al.  High critical current densities in epitaxial YBa2Cu3O7−δ thin films on silicon‐on‐sapphire , 1991 .

[122]  J. Longo,et al.  High pressure synthesis of (ABX3) (AX)n compounds , 1972 .

[123]  S. Kawai,et al.  CRYSTAL STRUCTURE AND SUPERCONDUCTIVITY OF (LA,SR)2CUO4/SM2CUO4 SUPERLATTICES PREPARED BY EXCIMER LASER DEPOSITION , 1991 .

[124]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[125]  Angus I. Kingon,et al.  Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications , 2005 .

[126]  D. Schlom,et al.  Epitaxial lead titanate grown by MBE , 1997 .

[127]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[128]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[129]  D. Tenne,et al.  Acoustic Bragg mirrors and cavities made using piezoelectric oxides , 2007 .

[130]  J. Curless,et al.  Hetero-Epitaxy of Crystalline Perovskite Oxides on GaAs(001) , 2003 .

[131]  Walker,et al.  Interface stability and the growth of optical quality perovskites on MgO. , 1994, Physical review letters.

[132]  Shimura,et al.  Superconductivity of one-unit-cell thick YBa2Cu3O7 thin film. , 1991, Physical review letters.

[133]  Predicting polarization enhancement in multicomponent ferroelectric superlattices , 2005, cond-mat/0512328.

[134]  L. Young,et al.  Non-destructive readout of ferroelectrics by field effect conductivity modulation , 1968 .

[135]  H. Ishiwara,et al.  Epitaxial Growth of Ferroelectric YMnO3 Thin Films on Si (111) Substrates by Molecular Beam Epitaxy , 1998 .

[136]  L. P. Wenzell,et al.  EFFECT OF A TWO-DIMENSIONAL PRESSURE ON THE CURIE POINT OF BARIUM TITANATE. TECHNICAL REPORT NO. 74 , 1954 .

[137]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[138]  R. Cava Structural Chemistry and the Local Charge Picture of Copper Oxide Superconductors , 1990, Science.

[139]  O. Meyer,et al.  Superconducting and structural properties of YBaCuO thin films deposited by inverted cylindrical magnetron sputtering , 1989 .

[140]  A. Erbil,et al.  Metalorganic chemical vapor deposition of PbTiO3 thin films , 1988 .

[141]  K. Abe,et al.  Thickness Dependence of Ferroelectricity in Heteroepitaxial BaTiO3 Thin Film Capacitors , 1999 .

[142]  G. Bai,et al.  Epitaxy‐induced phase of near‐stoichiometry PbTiO3 films prepared by metalorganic chemical vapor deposition , 1992 .

[143]  R. Ramesh,et al.  Epitaxial integration of (0001) BiFeO3 with (0001) GaN , 2007 .

[144]  J. V. D. Boomgaard,et al.  A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4 , 1978 .

[145]  J. Speck,et al.  Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films , 2002 .

[146]  C. M. Folkman,et al.  Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. , 2008, Physical review letters.

[147]  D. Tenne,et al.  Prediction of ferroelectricity in BaTiO3∕SrTiO3 superlattices with domains , 2007 .

[148]  J. Tarascon,et al.  Epitaxial growth of ferroelectric bismuth titanate thin films by pulsed laser deposition , 1990 .

[149]  Long-qing Chen,et al.  Temperature-strain phase diagram for BaTiO3 thin films , 2006 .

[150]  Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices , 2002, cond-mat/0211421.

[151]  R. Satô Surface Oxidation of Zincblende Cleavage Face in the Roasting Atmosphere , 1951 .

[152]  Y. Jia,et al.  Epitaxial growth of non-c-oriented SrBi2Nb2O9 on (111) SrTiO3 , 2000 .

[153]  Jean-Marie Tarascon,et al.  Low‐temperature preparation of high Tc superconducting thin films , 1988 .

[154]  A. Cho Molecular Beam Epitaxy From Research to Manufacturing , 1995 .

[155]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[156]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[157]  R. Ramesh,et al.  Controlling self-assembled perovskite-spinel nanostructures. , 2006, Nano letters.

[158]  Brunner,et al.  Y-Ba-Cu-O/Dy-Ba-Cu-O superlattices: A first step towards the artificial construction of high-Tc superconductors. , 1989, Physical review letters.

[159]  K. Müller,et al.  Susceptibility Measurements Support High-Tc Superconductivity in the Ba-La-Cu-O System , 1987 .

[160]  E. Subbarao,et al.  A family of ferroelectric bismuth compounds , 1962 .

[161]  T. H. Geballe,et al.  Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia , 1997 .

[162]  T. Takami,et al.  (01n)-Oriented BiSrCaCuO Thin Films Formed on CeO2Buffer Layers , 1993 .

[163]  M. Mansori,et al.  High-Temperature XRD and DTA Studies of BiMnO3Perovskite , 1999 .

[164]  R. Ramesh,et al.  Threading dislocation generation in epitaxial (Ba,Sr) TiO3 films grown on (001) LaAlO3 by pulsed laser deposition , 2004 .

[165]  H. Yamaguchi,et al.  Reactive Coevaporation Synthesis and Characterization of SrTiO3 Thin Films , 1991 .

[166]  U. Syamaprasad,et al.  Structural and Transport Properties of the , 2010 .

[167]  David J. Smith,et al.  A homologous series of recurrent intergrowth structures of the type Bi4Am + n 2Bm + nO3(m + n) + 6 formed by oxides of the aurivillius family , 1984 .

[168]  A. Williams,et al.  Anisotropy and Magnetostriction of Some Ferrites , 1955 .

[169]  R. Newnham,et al.  Bismuth titanate solid solutions , 1972 .

[170]  J. Woicik,et al.  c-axis oriented epitaxial BaTiO3 films on (001) Si , 2006 .

[171]  H. Christen,et al.  Strong polarization enhancement in asymmetric three-component ferroelectric superlattices , 2005, Nature.

[172]  K. Abe,et al.  Modification of ferroelectricity in heteroepitaxial (Ba, Sr)TiO3 films for non-volatile memory applications , 1998 .

[173]  Yang,et al.  Growth of alkali halides from molecular beams: Global growth characteristics. , 1989, Physical review letters.

[174]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[175]  B. Batlogg,et al.  Cooperating on superconductivity , 1992, IEEE Spectrum.

[176]  S. Trolier-McKinstry,et al.  Real-time spectroscopic ellipsometry as a characterization tool for oxide molecular beam epitaxy , 2001 .

[177]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[178]  C. M. Foster Chemical Vapor Deposition of Ferroelectric Thin Films , 1997 .

[179]  M. A. Herman,et al.  Molecular Beam Epitaxy: Fundamentals and Current Status , 1989 .

[180]  K. Szot,et al.  Surfaces of reduced and oxidized SrTiO 3 from atomic force microscopy , 1999 .

[181]  Y. Maeno,et al.  Pressure dependence of superconducting critical temperature of Sr{sub 2}RuO{sub 4} , 1997 .

[182]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[183]  R. Farrow Molecular Beam Epitaxy: Applications to Key Materials , 1995 .

[184]  Yves U. Idzerda,et al.  Epitaxial multilayers of ferromagnetic insulators with nonmagnetic metals and superconductors , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[185]  Freund Thin Film Materials , 2004 .

[186]  Risto M. Nieminen,et al.  Electronic Properties of Two-Dimensional Systems , 1988 .

[187]  J. Eckstein,et al.  Anisotropic magnetoresistance in tetragonal La1−xCaxMnOδ thin films , 1996 .

[188]  Y. Jia,et al.  Transmission electron microscopy study of (103)-oriented epitaxial SrBi 2 Nb 2 O 9 films grown on (111) SrTiO 3 and (111) SrRuO 3 /(111)SrTiO 3 , 2001 .

[189]  Stritzker,et al.  Reflection high-energy electron diffraction oscillations modulated by laser-pulse deposited YBa2Cu3O7-x. , 1992, Physical review letters.

[190]  Y. Maeno,et al.  The intriguing superconductivity of strontium ruthenate , 2001 .

[191]  Y. S. Touloukian Thermal Expansion: Nonmetallic Solids , 1977 .

[192]  Y. Ootuka,et al.  Superconductivity in Single-Crystalline Sr1-xLaxTiO3 , 1996 .

[193]  J. Eckstein,et al.  High-Temperature Superconducting Multilayers and Heterostructures Grown by Atomic Layer-By-Layer Molecular Beam Epitaxy , 1995 .

[194]  Chang-Beom Eom,et al.  Growth of nanoscale BaTiO_3/SrTiO_3 superlattices by molecular-beam epitaxy , 2008 .

[195]  Budai,et al.  Superconductivity in nonsymmetric epitaxial YBa2Cu3O7-x/PrBa2Cu3O7-x superlattices: The superconducting behavior of Cu-O bilayers. , 1990, Physical review letters.

[196]  Koichi Kuroiwa,et al.  Interaction of PbTiO3 Films with Si Substrate , 1994 .

[197]  J. Horwitz,et al.  X-RAY CHARACTERIZATION OF EXTREMELY HIGH QUALITY (SR,BA)TIO3 FILMS GROWN BY PULSED LASER DEPOSITION , 1995 .

[198]  Karin M Rabe,et al.  Magnetic and electric phase control in epitaxial EuTiO(3) from first principles. , 2006, Physical review letters.

[199]  U. Gösele,et al.  Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites , 2004, Nature materials.

[200]  Nicola A. Spaldin,et al.  Recent progress in first-principles studies of magnetoelectric multiferroics , 2005 .

[201]  David J. Smith,et al.  Elastic strain at the solid-solid interface in intergrowth structures : A novel example of partial structure refinement by HREM , 1984 .

[202]  S. Wu,et al.  Optimization of epitaxial quality in sputtered films of ferroelectric bismuth titanate , 1975 .

[203]  M. Hervieu,et al.  Microstructural and physical properties of layered manganites oxides related to the magnetoresistive perovskites , 1996 .

[204]  N. Tanabe,et al.  In‐plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates , 1992 .

[205]  R. Uecker,et al.  Spiral formation during Czochralski growth of rare-earth scandates , 2006 .

[206]  Zi-kui Liu,et al.  Optical band gap of BiFeO3 grown by molecular-beam epitaxy , 2008 .

[207]  R. Mckee,et al.  Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. , 2001, Science.

[208]  R. Cook,et al.  Lanthanide gallate perovskite-type substrates for expitaxial, high- T c superconducting Ba 2 YCu 3 d 7–0 films , 1990 .

[209]  J. Lettieri Critical issues of complex, epitaxial oxide growth and integration with silicon by molecular beam epitaxy , 2002 .

[210]  H. C. Li,et al.  In situ preparation of Y‐Ba‐Cu‐O superconducting thin films by magnetron sputtering , 1988 .

[211]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[212]  J. Phillips Substrate Selection for Thin-Film Growth , 1995 .

[213]  H. Koinuma,et al.  Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition , 2005 .

[214]  E. Morán,et al.  A novel “126” phase of the family of Y2Ba4Cu6+nO14+n high-temperature superconducting materials , 1991 .

[215]  V. Nagarajan,et al.  Can interface dislocations degrade ferroelectric properties , 2004 .

[216]  Junling Wang,et al.  Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions , 2004 .

[217]  H. McAdams,et al.  Reliability properties of low voltage PZT ferroelectric capacitors and arrays , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[218]  M. H. Corbett,et al.  Enhancement of dielectric constant and associated coupling of polarization behavior in thin film relaxor superlattices , 2001 .

[219]  A. Balbashov,et al.  Floating zone growth of high-quality SrTiO3 single crystals , 2003 .

[220]  Robert W. Schwartz,et al.  Chemical Solution Deposition of Perovskite Thin Films , 1997 .

[221]  V. Gopalan,et al.  Electric field induced domain rearrangement in potassium niobate thin films studied by in situ second harmonic generation measurements , 1997 .

[222]  Bruce M. Clemens,et al.  Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films , 1999 .

[223]  Akira Ohtomo,et al.  Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 , 2004, Nature.

[224]  D. Chrisey,et al.  Pulsed Laser Deposition of High T_c Superconducting Thin Films for Electronic Device Applications , 1992 .

[225]  Youichi Murakami,et al.  Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4 , 2005, Nature.

[226]  K. Saito,et al.  Quantitative Effects of Preferred Orientation and Impurity Phases on Ferroelectric Properties of SrBi2(Ta1-xNbx)2O9 Thin Films Measured by X-Ray Diffraction Reciprocal Space Mapping , 2003 .

[227]  T. R. Dinger,et al.  Reliable single‐target sputtering process for high‐temperature superconducting films and devices , 1988 .

[228]  Tsutomu Yoshitake,et al.  Epitaxial Y-Ba-Cu-O Films on Si with Intermediate Layer by RF Magnetron Sputtering , 1988 .

[229]  J. Luine,et al.  Thermal expansion of LaAlO3 and (La,Sr)(Al,Ta)O3, substrate materials for superconducting thin-film device applications , 1998 .

[230]  朱葆伦,et al.  113m , 1985 .

[231]  Y. Yano,et al.  GROWTH AND CHARACTERIZATION OF 10-NM-THICK C-AXIS ORIENTED EPITAXIAL PBZR0.25TI0.75O3 THIN FILMS ON (100)SI SUBSTRATE , 1998 .

[232]  Rainer Waser,et al.  Phase diagrams and physical properties of single-domain epitaxialPb(Zr1−xTix)O3thin films , 2003 .

[233]  L. Chen,et al.  Phase-field model of domain structures in ferroelectric thin films , 2001 .

[234]  I. Tsu,et al.  In situ growth of highly oriented Pb(Zr0.5Ti0.5)O3 thin films by low-temperature metal–organic chemical vapor deposition , 1998 .

[235]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[236]  D. Fork,et al.  Epitaxial BaTiO3/MgO Structure Grown on GaAs(100) by Pulsed Laser Deposition* , 1993 .

[237]  P. Fons,et al.  Molecular dynamics simulations of low-energy particle bombardment effects during vapor-phase crystal growth: 10 eV Si atoms incident on Si(001)2×1 surfaces , 1990 .

[238]  M. Hervieu,et al.  Crystal Chemistry of Superconductive Bismuth and Thallium Cuprates , 1989 .

[239]  D. Tenne,et al.  Interfacial coherency and ferroelectricity of BaTiO3∕SrTiO3 superlattice films , 2007 .

[240]  S. Pearton,et al.  Hydrogen-assisted pulsed-laser deposition of epitaxial CeO2 films on (001)InP , 2002 .

[241]  D. Clarke,et al.  Crystallographic orientation of epitaxial BaTiO3 films: The role of thermal‐expansion mismatch with the substrate , 1995 .

[242]  G. Hubler,et al.  Pulsed Laser Deposition of Thin Films , 2003, Handbook of Laser Technology and Applications.

[243]  A. Tagantsev,et al.  Erratum: Phase transitions and strain-induced ferroelectricity in SrTiO 3 epitaxial thin films [Phys. Rev. B 61, R825 (2000)] , 2002 .

[244]  V. Gopalan,et al.  Domain Structure‐Second Harmonic Generation Correlation in Potassium Niobate Thin Films Deposited on a Strontium Titanate Substrate , 1996 .

[245]  James S. Speck,et al.  DOMAIN CONFIGURATIONS DUE TO MULTIPLE MISFIT RELAXATION MECHANISMS IN EPITAXIAL FERROELECTRIC THIN FILMS. I: THEORY , 1994 .

[246]  C. Fennie Ferroelectrically induced weak ferromagnetism by design. , 2007, Physical review letters.

[247]  U Zeitler,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[248]  H. Koinuma,et al.  Effect of A -site cation ordering on the magnetoelectric properties in [ ( LaMnO 3 ) m / ( SrMnO 3 ) m ] n artificial superlattices , 2002 .

[249]  V. Nagarajan,et al.  Epitaxial La-doped SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on silicon , 2002 .

[250]  F. Walker,et al.  High-k Crystalline Gate Dielectrics: A Research Perspective , 2005 .

[251]  Y. Takeda,et al.  A new family of copper oxide superconductors Srn+1CunO2n+1+δ stabilized at high pressure , 1993, Nature.

[252]  Yoshinori Tokura,et al.  Correlated-electron physics in transition-metal oxides , 2003 .

[253]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[254]  John D. Budai,et al.  Epitaxial YBa2Cu3O7 on Biaxially Textured Nickel (001): An Approach to Superconducting Tapes with High Critical Current Density , 1996, Science.

[255]  J. Maria,et al.  The influence of energetic bombardment on the structure and properties of epitaxial SrRuO3 thin films grown by pulsed laser deposition , 1998 .

[256]  J. Gregg,et al.  Dielectric enhancement and Maxwell–Wagner effects in ferroelectric superlattice structures , 2000 .

[257]  H. Kohler,et al.  Mixed-perovskite substrates for high-Tc superconductors , 1991 .

[258]  Ronald J. Gutmann,et al.  Growth and characterization of In{sub 0.2}Ga{sub 0.8}Sb device structures using metalorganic vapor phase epitaxy , 1997 .

[259]  J. Maria,et al.  Ferroelectric response from lead zirconate titanate thin films prepared directly on low-resistivity copper substrates , 2005 .

[260]  First-principles study of epitaxial strain in perovskites , 2005, cond-mat/0506777.

[261]  R. Dingle,et al.  Epitaxial structures with alternate‐atomic‐layer composition modulation , 1976 .

[262]  R. Uecker,et al.  Properties of rare-earth scandate single crystals (Re = Nd-Dy) , 2008 .

[263]  J. Panitz,et al.  Radio‐frequency‐sputtered tetragonal barium titanate films on silicon , 1979 .

[264]  K. Ohoyama,et al.  Structure determination of ferromagnetic perovskite BiMnO3 , 1999 .

[265]  H. Scheel,et al.  Flame-fusion growth of SrTiO3 , 1977 .

[266]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact With silicon , 1996 .

[267]  Mark D. Losego,et al.  MgO epitaxy on GaN (0002) surfaces by molecular beam epitaxy , 2006 .

[268]  G. Catalan,et al.  Relaxor features in ferroelectric superlattices: A Maxwell–Wagner approach , 2000 .

[269]  Ross E. Muenchausen,et al.  Pulsed Laser Deposition: Future Directions , 1992 .

[270]  T. Sands,et al.  Ferroelectric La‐Sr‐Co‐O/Pb‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on silicon via template growth , 1993 .

[271]  G. A. Candela,et al.  Magnetic Susceptibility of Insulating and Semiconducting Strontium Titanate , 1966 .

[272]  B. Joyce Molecular beam epitaxy-fundamentals and current status , 1990 .

[273]  S.E. Cummins,et al.  Domain Structure and Polarization Reversal in Films of Ferroelectric Bismuth Titanate , 1972, IEEE Transactions on Sonics and Ultrasonics.

[274]  Y. Jia,et al.  Synthesis and characterization of an n=6 Aurivillius phase incorporating magnetically active manganese, Bi7(Mn,Ti)6O21 , 2007 .

[275]  S. Yamamichi,et al.  Barrier layers for realization of high capacitance density in SrTiO3 thin‐film capacitor on silicon , 1990 .

[276]  Polarization enhancement in two- and three-component ferroelectric superlattices , 2005, cond-mat/0505491.

[277]  John D. Budai,et al.  Hydrogen-Assisted Pulsed-Laser Deposition of (001) CeO2 on (001) Ge , 2000 .

[278]  B. Raveau,et al.  Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides , 1998 .

[279]  John D. Budai,et al.  High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals , 1996 .

[280]  K. Iijima,et al.  Atomic layer growth of oxide thin films with perovskite‐type structure by reactive evaporation , 1992 .

[281]  Greene,et al.  Preparation, structure, and properties of the superconducting compound series Bi2Sr2Can-1CunOy with n=1, 2, and 3. , 1988, Physical review. B, Condensed matter.

[282]  Polarization rotation transitions in anisotropically strained SrTiO3 thin films , 2008 .

[283]  Meyer,et al.  Compositional inversion symmetry breaking in ferroelectric perovskites , 2000, Physical review letters.

[284]  C. Brandle,et al.  Congruent composition for growth of lanthanum aluminate , 1993 .

[285]  Y. Jia,et al.  Growth of (103) fiber-textured SrBi2Nb2O9 films on Pt-coated silicon , 2002 .

[286]  R. Ramesh,et al.  Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects , 2000 .

[287]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[288]  Multiferroic domain dynamics in strained strontium titanate. , 2006, Physical review letters.

[289]  J. Speck,et al.  Common Themes in ther Epitaxial Growth of Oxides on Semiconductors , 1994 .

[290]  T. Venkatesan,et al.  Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material , 1987 .

[291]  J. Bednorz,et al.  Crystal growth of strontium titanate SrTiO3 , 1976 .

[292]  J. Harris,et al.  Infra-red transmission spectroscopy of GaAs during molecular beam epitaxy , 1987 .

[293]  Satishchandra Ogale,et al.  Multiferroic BaTiO 3 -CoFe 2 O 4 Nanostructures , 2004 .

[294]  Juho Kim,et al.  Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity , 2003 .

[295]  D. Fork,et al.  Epitaxial growth of MgO on GaAs(001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition , 1992 .

[296]  D. Norton,et al.  Surface treatment for forming unit-cell steps on the (0 0 1) KTaO3 substrate surface , 2005 .

[297]  J. Speck,et al.  GROWTH-RELATED STRESS AND SURFACE MORPHOLOGY IN HOMOEPITAXIAL SRTIO3 FILMS , 1996 .

[298]  M. Fujimoto,et al.  BATIO3 THIN FILMS GROWN ON SRTIO3 SUBSTRATES BY A MOLECULAR-BEAM-EPITAXY METHOD USING OXYGEN RADICALS , 1997 .

[299]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[300]  A. Gutakovskii,et al.  High resolution electron microscopy of semiconductor interfaces , 1995 .

[301]  V. Gopalan,et al.  Phase transitions and domain structures in strained pseudocubic ( 100 ) SrTiO 3 thin films , 2006 .

[302]  T. Kawai,et al.  LaSrGaO4 substrate gives oriented crystalline YBa2Cu3O7−y films , 1991 .

[303]  D. Norton,et al.  The growth and properties of epitaxial KNbO3 thin films and KNbO3/KTaO3 superlattices , 1996 .

[304]  Q. Jia,et al.  Structural evidence for enhanced polarization in a commensurate short-period BaTiO3∕SrTiO3 superlattice , 2006 .

[305]  S. Chambers Epitaxial growth and properties of thin film oxides , 2000 .

[306]  H. Cerva,et al.  Comparison of the information content in 〈110〉 - and 〈100〉 -projected high-resolution transmission electron microscope images for the quantitative analysis of AlAs/GaAs interfaces , 1994 .

[307]  U. Poppe,et al.  Direct production of crystalline superconducting thin films of YBa2Cu3O7 by high-pressure oxygen sputtering , 1988 .

[308]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[309]  X. Pan,et al.  Abrupt PbTiO3/SrTiO3 superlattices grown by reactive molecular beam epitaxy , 1999 .

[310]  G. Virshup,et al.  Superconducting oxide multilayers and superlattices: Physics, chemistry, and nanoengineering , 1994 .

[311]  H. Ishiwara,et al.  Epitaxial Growth of SrTiO3 Films on Si(100) Substrates Using a Focused Electron Beam Evaporation Method , 1991 .

[312]  K. Rabe Theoretical investigations of epitaxial strain effects in ferroelectric oxide thin films and superlattices , 2005 .

[313]  James S. Speck,et al.  Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. III. Interfacial defects and domain misorientations , 1995 .

[314]  Karin M. Rabe,et al.  FIRST-PRINCIPLES INVESTIGATION OF FERROMAGNETISM AND FERROELECTRICITY IN BISMUTH MANGANITE , 1999 .

[315]  M. Satoh,et al.  Epitaxial Growth of EuBa2Cu3O7-y Films on YAlO3 Single Crystals , 1990 .

[316]  Ravi Droopad,et al.  Epitaxial oxide thin films on Si(001) , 2000 .

[317]  H. Christen,et al.  Field-dependent dielectric permittivity of paraelectric superlattice structures , 1998 .

[318]  Hao Li,et al.  Two-dimensional growth of high-quality strontium titanate thin films on Si , 2003 .

[319]  C. Rao,et al.  Intergrowth structures: the chemistry of solid-solid interfaces , 1985 .

[320]  R. Waser,et al.  Misfit dislocations in nanoscale ferroelectric heterostructures , 2005 .

[321]  H. Koinuma,et al.  Atomic Control of the SrTiO3 Crystal Surface , 1994, Science.

[322]  S. Trolier-McKinstry,et al.  Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3 , 2008 .

[323]  H. Rogalla,et al.  Imposed layer-by-layer growth by pulsed laser interval deposition , 1999 .

[324]  R. E. Miles,et al.  Lead zirconate titanate thin films on GaAs substrates , 1997 .

[325]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[326]  Y. Syono,et al.  New Magnetic Perovskites BiMnO 3 and BiCrO 3 , 1965 .

[327]  Julia M. Phillips,et al.  Substrate selection for high‐temperature superconducting thin films , 1996 .

[328]  S. Migita,et al.  Epitaxial Bi4Ti3O12 thin film growth using Bi self-limiting function , 1999 .

[329]  J. R. Arthur,et al.  Molecular beam epitaxy , 1975 .

[330]  D. K. Lathrop,et al.  Production of YBa2Cu3O7−y superconducting thin films in situ by high‐pressure reactive evaporation and rapid thermal annealing , 1987 .

[331]  J. Lettieri,et al.  Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon , 2002 .

[332]  William E Lee,et al.  Phase stability and interfacial structures in the SrO-SrTiO3system , 1997 .

[333]  Chang-Beom Eom,et al.  Strain Tuning of Ferroelectric Thin Films , 2007 .

[334]  D. Veblen Polysomatism and polysomatic series : a review and applications , 1991 .

[335]  X. Pan,et al.  Adsorption-controlled growth of Bi4Ti3O12Bi4Ti3O12 by reactive MBE , 1998 .

[336]  K. Saito,et al.  Comparison of electrical properties of (100)∕(001)-oriented epitaxial Pb(Zr0.35,Ti0.65)O3 thin films with the same (001) domain fraction grown on (100)Si and (100)SrTiO3 substrates , 2005 .

[337]  Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures , 2001, cond-mat/0102460.

[338]  Rustum Roy,et al.  Materials Research Society , 1984 .

[339]  H. Funakubo,et al.  Domain structure control of (001)∕(100)-oriented epitaxial Pb(Zr,Ti)O3 films grown on (100)cSrRuO3∕(100)SrTiO3 substrates , 2005 .

[340]  R. Mitchell,et al.  A structural study of ternary lanthanide orthoscandate perovskites , 2004 .

[341]  H. Koinuma,et al.  Compositional and Structural Analyses for Optimizing the Preparation Conditions of Superconducting (La1-xSrx)yCuO4-δ Films by Sputtering , 1987 .

[342]  C. Jia,et al.  Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3(110). , 2003 .

[343]  Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles , 2004, cond-mat/0407077.

[344]  K. Shimura,et al.  Unit cell-by-unit cell grown (YBa2Cu3O7−δ)1/(PrBa2Cu3O7t−δ)1 superlattice , 1991 .

[345]  S. N. Ruddlesden,et al.  New compounds of the K2NIF4 type , 1957 .

[346]  C. Zaldo,et al.  Epitaxial growth of Y-stabilised zirconia films on (1 0 0)InP substrates by pulsed laser deposition , 2000 .

[347]  Shaw,et al.  Effect of atomic oxygen on the initial growth mode in thin epitaxial cuprate films. , 1994, Physical review. B, Condensed matter.

[348]  Shu-Yau Wu,et al.  A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor , 1974 .

[349]  T. Williams,et al.  New layered perovskites in the SrRuO system: A transmission electron microscope study , 1991 .

[350]  K. Fujii,et al.  Preparation of YBa 2 Cu 3 O x Thin Films by Layer-by-Layer Metalorganic Chemical Vapor Deposition , 1992 .

[351]  Superlattices of high-temperature superconductors: synthetically modulated structures, critical temperatures and vortex dynamics , 1997 .

[352]  Xiaoqing Pan,et al.  Bismuth manganite: A multiferroic with a large nonlinear optical response , 2004 .

[353]  H. Stormer,et al.  Parameters for in situ growth of high Tc superconducting thin films using an oxygen plasma source , 1988 .

[354]  D. Fork,et al.  Epitaxial MgO on Si(001) for Y‐Ba‐Cu‐O thin‐film growth by pulsed laser deposition , 1991 .

[355]  W. F. Peck,et al.  A new homologous series of lanthanum copper oxides , 1991 .

[356]  D. Schlom,et al.  RHEED Intensity Oscillations for the Stoichiometric Growth of SrTiO3 Thin Films by Reactive Molecular Beam Epitaxy , 2000 .

[357]  T. Ikeda A Few Quarternary Systems of Perovskite Type A2+B4+O3 Solid Solutions , 1959 .

[358]  L. Maritato,et al.  High metal-insulator transition temperature in La1-xSrxMnO3 thin films grown in low oxygen partial pressure by molecular beam epitaxy , 2004 .

[359]  D. Schlom,et al.  Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy , 1998 .

[360]  D. Muller,et al.  Epitaxial integration of the highly spin-polarized ferromagnetic semiconductor EuO with silicon and GaN. , 2007, Nature materials.

[361]  Amit Kumar,et al.  Adsorption-controlled molecular-beam epitaxial growth of BiFeO3 , 2007 .

[362]  T. Ohnishi,et al.  Defects and transport in complex oxide thin films , 2008 .

[363]  O. Eibl Crystal defects in Bi2Sr2Can−1CunO4+2n+δ ceramics , 1990 .

[364]  P. W. Richter,et al.  High-pressure synthesis of YScO3, HoScO3, ErScO3, and TmScO3, and a reevaluation of the lattice constants of the rare earth scandates , 1978 .

[365]  V. Caignaert,et al.  Giant magnetoresistance ratios superior to 1011 in manganese perovskites , 1995 .

[366]  M. Fiebig,et al.  Probing of Ferroelectric Surface and Bulk Domains in Ferroelectric RMnO3 (R = Y, Ho) by Second Harmonic Generation , 2002 .

[367]  D. Awschalom,et al.  Epitaxial growth and magnetic properties of EuO on (001) Si by molecular-beam epitaxy , 2003 .