Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region

A CMOS-compatible avalanche photodiode (APD) with high speed and high sensitivity is a critical component of a low-cost, high-data-rate, and energy-efficient optical communication link. A novel waveguide-coupled silicon–germanium APD detector with three electric terminals was demonstrated with breakdown voltage of −6  V, bandwidth of 18.9 GHz, DC photocurrent gain of 15, open-eye diagram at a data rate of 35 Gb/s, and sensitivity of −11.4  dBm at a data rate of 25 Gb/s. This three-terminal APD allows high-yield fabrication in the standard CMOS process and provides robust high-sensitivity operation under small voltage supply.

[1]  Odile Liboiron-Ladouceur,et al.  Responsivity optimization of a high-speed germanium-on-silicon photodetector. , 2016, Optics express.

[2]  P. Crozat,et al.  42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. , 2009, Optics express.

[3]  J. Hartmann,et al.  Germanium avalanche receiver for low power interconnects , 2014, Nature Communications.

[4]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[6]  John E. Bowers,et al.  Equivalent circuit model of a Ge/Si avalanche photodiode , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[7]  Marco Fiorentino,et al.  Operation and analysis of low-voltage three-terminal avalanche photodiodes , 2017, 2017 IEEE 14th International Conference on Group IV Photonics (GFP).

[8]  Di Liang,et al.  35Gb/s Ultralow-Voltage Three-Terminal Si-Ge Avalanche Photodiode , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[9]  J.-W. Shi,et al.  Dynamic Analysis of a Si/SiGe-Based Impact Ionization Avalanche Transit Time Photodiode With an Ultrahigh Gain-Bandwidth Product , 2009, IEEE Electron Device Letters.

[10]  Kunzhi Yu,et al.  A 25Gbps low-voltage waveguide Si-Ge avalanche photodiode , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[11]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[12]  Binhao Wang,et al.  A Compact Model for Si—Ge Avalanche Photodiodes , 2018, 2018 IEEE 15th International Conference on Group IV Photonics (GFP).

[13]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[14]  Rajeev J Ram,et al.  Resonance-enhanced waveguide-coupled silicon-germanium detector , 2016, 1601.00542.

[15]  Bishop Brock,et al.  Architecting for power management: The IBM® POWER7™ approach , 2010, HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture.

[16]  S. D. Personick,et al.  Receiver design for optical fiber communication systems , 1980 .

[17]  Yimin Kang,et al.  Derivation of the Small Signal Response and Equivalent Circuit Model for a Separate Absorption and Multiplication Layer Avalanche Photodetector , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  J Van Campenhout,et al.  High sensitivity 10Gb/s Si photonic receiver based on a low-voltage waveguide-coupled Ge avalanche photodetector. , 2015, Optics express.

[19]  D. Trotter,et al.  High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes. , 2016, Optics express.

[20]  Di Liang,et al.  Low-voltage three-terminal avalanche photodiodes , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).