Microwatt Embedded Processor Platform for Medical System-on-Chip Applications

Battery life specifications drive the power consumption requirements of integrated circuits in implantable, wearable, and portable medical devices. In this paper, we present an embedded processor platform chip using an ARM Cortex-M3 suitable for mapping medical applications requiring microwatt power consumption. Ultra-low-power operation is achieved via 0.5-1.0 V operation, a 28 fW/bit fully differential subthreshold 6T SRAM, a 90%-efficient DC-DC converter, and a 100-nJ fast Fourier transform (FFT) accelerator to reduce processor workload. Using a combination of novel circuit design, system architecture, and SoC implementation, the first sub-microwatt per channel electroencephalograph (EEG) seizure detection is demonstrated.

[1]  Gu-Yeon Wei,et al.  A fully digital, energy-efficient, adaptive power-supply regulator , 1999 .

[2]  Kaushik Roy,et al.  Ultra-low power digital subthreshold logic circuits , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[3]  Anantha P. Chandrakasan,et al.  Subthreshold Circuit Techniques , 2004 .

[4]  Bo Zhai,et al.  A Variation-Tolerant Sub-200 mV 6-T Subthreshold SRAM , 2008, IEEE Journal of Solid-State Circuits.

[5]  Wonchan Kim,et al.  A Low Voltage Low Power CMOS Delay Element , 1995, ESSCIRC '95: Twenty-first European Solid-State Circuits Conference.

[6]  Sourabh Ravindran,et al.  Low complexity algorithms for heart rate and epileptic seizure detection , 2009, 2009 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies.

[7]  Gregory Molnar,et al.  Radios for the brain? a practical micropower sensing and algorithm architecture for neurostimulators , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[8]  Jinhuai Liu,et al.  Rapid detection of hazardous gas using one SnO/sub 2/ gas sensor based on dynamic measurement , 2004, International Conference on Information Acquisition, 2004. Proceedings..

[9]  Seok-Jun Lee,et al.  Microwatt embedded processor platform for medical system-on-chip applications , 2010, 2010 Symposium on VLSI Circuits.

[10]  A.P. Chandrakasan,et al.  Minimum Energy Tracking Loop With Embedded DC–DC Converter Enabling Ultra-Low-Voltage Operation Down to 250 mV in 65 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[11]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[12]  Paul Rubel,et al.  Toward a Personal Health Society in Cardiology , 2010, IEEE Transactions on Information Technology in Biomedicine.

[13]  A.-T. Avestruz,et al.  A 5 $\mu$ W/Channel Spectral Analysis IC for Chronic Bidirectional Brain–Machine Interfaces , 2008, IEEE Journal of Solid-State Circuits.

[14]  Daeyeon Kim,et al.  The Phoenix Processor: A 30pW platform for sensor applications , 2008, 2008 IEEE Symposium on VLSI Circuits.

[15]  Gerhard Merz Fast Fourier Transform Algorithms with Applications , 1983 .

[16]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[17]  Robert Matusiak,et al.  Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS 320 DSP Platform , 2002 .

[18]  A. Chandrakasan,et al.  7 A 65 nm Sub-V , Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC Converter , 2007 .