Soft quantification in statistical relational learning

We present a new statistical relational learning (SRL) framework that supports reasoning with soft quantifiers, such as “most” and “a few.” We define the syntax and the semantics of this language, which we call $$\hbox {PSL}^Q$$PSLQ, and present a most probable explanation inference algorithm for it. To the best of our knowledge, $$\hbox {PSL}^Q$$PSLQ is the first SRL framework that combines soft quantifiers with first-order logic rules for modelling uncertain relational data. Our experimental results for two real-world applications, link prediction in social trust networks and user profiling in social networks, demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves inference accuracy.

[1]  Norman W. Paton,et al.  Structuring Linked Data Search Results Using Probabilistic Soft Logic , 2016, International Semantic Web Conference.

[2]  Pedro M. Domingos,et al.  Recursive Random Fields , 2007, IJCAI.

[3]  Daniel Sánchez,et al.  Fuzzy cardinality based evaluation of quantified sentences , 2000, Int. J. Approx. Reason..

[4]  Daniel Sánchez,et al.  Fuzzy quantification: a state of the art , 2014, Fuzzy Sets Syst..

[5]  Janyce Wiebe,et al.  Joint Prediction for Entity/Event-Level Sentiment Analysis using Probabilistic Soft Logic Models , 2015, EMNLP.

[6]  Trevor P Martin,et al.  On the implementation of Fril++ for object-oriented logic programming with uncertainty and fuzziness , 2002 .

[7]  Jure Leskovec,et al.  Exploiting Social Network Structure for Person-to-Person Sentiment Analysis , 2014, TACL.

[8]  Dejing Dou,et al.  Weakly Supervised Tweet Stance Classification by Relational Bootstrapping , 2016, EMNLP.

[9]  GetoorLise,et al.  Hinge-loss Markov random fields and probabilistic soft logic , 2017 .

[10]  Leslie Pack Kaelbling,et al.  Lifted Probabilistic Inference with Counting Formulas , 2008, AAAI.

[11]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[12]  Lise Getoor,et al.  A Flexible Framework for Probabilistic Models of Social Trust , 2013, SBP.

[13]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[14]  Louiqa Raschid,et al.  Ieee/acm Transactions on Computational Biology and Bioinformatics 1 Network-based Drug-target Interaction Prediction with Probabilistic Soft Logic , 2022 .

[15]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[16]  GeunSik Jo,et al.  Personalized advertisement system using social relationship based user modeling , 2013, Multimedia Tools and Applications.

[17]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[18]  Camiel J. Beukeboom,et al.  A stage to engage: Social media use and corporate reputation , 2015 .

[19]  Marie-Francine Moens,et al.  Scalable adaptive label propagation in Grappa , 2015, 2015 IEEE International Conference on Big Data (Big Data).

[20]  Lise Getoor,et al.  A probabilistic approach for collective similarity-based drug-drug interaction prediction , 2016, Bioinform..

[21]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[22]  Kristian Kersting,et al.  Relational Logistic Regression: The Directed Analog of Markov Logic Networks , 2014, StarAI@AAAI.

[23]  Lise Getoor,et al.  Knowledge Graph Identification , 2013, SEMWEB.

[24]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[25]  Jure Leskovec,et al.  Signed networks in social media , 2010, CHI.

[26]  Umberto Straccia,et al.  fuzzyDL: An expressive fuzzy description logic reasoner , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[27]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[28]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[29]  D. Poole,et al.  Aggregation and Population Growth : The Relational Logistic Regression and Markov Logic Cases , 2012 .

[30]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[31]  James R. Foulds,et al.  HyPER: A Flexible and Extensible Probabilistic Framework for Hybrid Recommender Systems , 2015, RecSys.

[32]  George J. Klir,et al.  Fuzzy sets and fuzzy logic , 1995 .

[33]  Jun Zhao,et al.  A Probabilistic Soft Logic Based Approach to Exploiting Latent and Global Information in Event Classification , 2016, AAAI.

[34]  Chandler Jake,et al.  Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) , 2016 .

[35]  Lise Getoor,et al.  Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction , 2013, UAI.

[36]  Katrin Erk,et al.  Probabilistic Soft Logic for Semantic Textual Similarity , 2014, ACL.

[37]  Katrin Erk,et al.  On the Proper Treatment of Quantifiers in Probabilistic Logic Semantics , 2015, IWCS.

[38]  Michael Beetz,et al.  Adaptive Markov Logic Networks: Learning Statistical Relational Models with Dynamic Parameters , 2010, ECAI.

[39]  Marie-Francine Moens,et al.  Statistical Relational Learning with Soft Quantifiers , 2015, ILP.

[40]  Kristian Kersting,et al.  Population Size Extrapolation in Relational Probabilistic Modelling , 2014, SUM.

[41]  Chris Cornelis,et al.  Trust and Recommendations , 2011, Recommender Systems Handbook.

[42]  F. Heider The psychology of interpersonal relations , 1958 .

[43]  Marie-Francine Moens,et al.  Extending PSL with Fuzzy Quantifiers , 2014, AAAI Workshop: Statistical Relational Artificial Intelligence.

[44]  Lotfi A. Zadeh,et al.  A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[45]  Gilles Richard,et al.  Learning First Order Fuzzy Logic Rules , 2003, IFSA.