Molecular aspects of halide ion hydration: the cluster approach.

This review provides a historical context for our understanding of the hydration shell surrounding halide ions and illustrates how the cluster systems can be used, in combination with theory, to elucidate the behavior of water molecules in direct contact with the anion. We discuss how vibrational predissociation spectroscopy, carried out with weakly bound argon atoms, has been employed to deduce the morphology of the small water networks attached to anions in the primary steps of hydration. We emphasize the importance of charge-transfer in the binary interaction, and discuss how this process affects the structures of the larger networks. Finally, we survey how the negatively charged water clusters (H2O)n(-) are providing a molecular-level perspective on how diffuse excess electrons interact with the water networks.

[1]  William H. Robertson,et al.  Argon predissociation infrared spectroscopy of the hydroxide–water complex (OH−·H2O) , 2002 .

[2]  T. Vaden,et al.  Rotational structure in the asymmetric OH stretch of Cs+(H2O)Ar , 2002 .

[3]  Marvin Johnson,et al.  Isolating the Charge-Transfer Component of the Anionic H Bond Via Spin Suppression of the Intracluster Proton Transfer Reaction in the NO-·H2O Entrance Channel Complex† , 2002 .

[4]  H. Bakker,et al.  Comment on: Water in the vicinity of solvated ions: modified dynamical and structural water properties resolved by sub-picosecond IR-spectroscopy by R. Laenen and A. Thaller , 2002 .

[5]  Z. Loh,et al.  Br--H2 and I--H2 anion complexes: Infrared spectra and radial intermolecular potential energy curves , 2002 .

[6]  D. Laria,et al.  Solvation dynamics following electron photodetachment from I− in aqueous clusters , 2002 .

[7]  Marvin Johnson,et al.  Infrared Spectroscopic Characterization of the Symmetrical Hydration Motif in the ·H2O Complex , 2002 .

[8]  G. Peslherbe,et al.  On the transition from surface to interior solvation in iodide–water clusters , 2002 .

[9]  W. Klopper,et al.  Ab initio calculation of proton barrier and binding energy of the (H2O)OH− complex , 2002 .

[10]  Douglas J. Tobias,et al.  Ions at the Air/Water Interface , 2002 .

[11]  W. Domcke,et al.  Development of an effective single-electron model of the electronic structure of hydronium and hydronium–water clusters , 2002 .

[12]  Marvin Johnson,et al.  Infrared Characterization of the Icosahedral Shell Closing in Cl-·H2O·Arn(1 ≤n≤ 13) Clusters , 2002 .

[13]  W. Domcke,et al.  Ab initio investigation of the structure and spectroscopy of hydronium-water clusters , 2002 .

[14]  Kwang S. Kim,et al.  Ab initio study of superoxide anion—water clusters O2 − (H2O)n=1-5 , 2002 .

[15]  Han Myoung Lee,et al.  Structures, spectra, and electronic properties of halide-water pentamers and hexamers, X−(H2O)5,6 (X=F,Cl,Br,I): Ab initio study , 2002 .

[16]  Q. K. Timerghazin,et al.  Theoretical investigation of charge transfer to solvent in photoexcited iodide–acetonitrile clusters , 2002 .

[17]  W. Sheu,et al.  Reply to the comment on `Iodine effect on the relaxation pathway of photoexcited I−(H2O)n clusters' [Chem. Phys. L 335 (2001) 475] , 2002 .

[18]  K. Jordan,et al.  Theoretical Study of the Dipole-Bound Excited States of I-(H2O)4 , 2002 .

[19]  R. Moszynski,et al.  The OH−(H2O)2 system: efficiency of ab initio and DFT calculations for two- and three-body interactions , 2002 .

[20]  S. Bradforth,et al.  Excited States of Iodide Anions in Water: A Comparison of the Electronic Structure in Clusters and in Bulk Solution , 2002 .

[21]  Mark A. Johnson,et al.  Solvation of the Cl-·H2O Complex in CCl4 Clusters: The Effect of Solvent-Mediated Charge Redistribution on the Ionic H-Bond , 2002 .

[22]  Marvin Johnson,et al.  Linking the photoelectron and infrared spectroscopies of the (H2O)6− isomers , 2002 .

[23]  Sotiris S. Xantheas,et al.  Development of transferable interaction models for water. III. Reparametrization of an all-atom polarizable rigid model (TTM2–R) from first principles , 2002 .

[24]  Gregory S. Tschumper,et al.  Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. , 2002, Chemical reviews.

[25]  W. Domcke,et al.  Hydrated hydronium: a cluster model of the solvated electron? , 2002 .

[26]  R. Mathies,et al.  Fluorescence and Resonance Raman Spectra of the Aqueous Solvated Electron , 2001 .

[27]  I. Hamilton,et al.  The complex of HF2− and H2O: A theoretical study , 2001 .

[28]  D. Bartels Moment analysis of hydrated electron cluster spectra: Surface or internal states? , 2001 .

[29]  George W. Neilson,et al.  Neutron and X–ray scattering studies of hydration in aqueous solutions , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  J. Leszczynski,et al.  The influence of the detachment of electrons on the properties and the nature of interactions in X−H2O (X=Cl, Br) complexes , 2001 .

[31]  D. Neumark,et al.  Characterization of ArnCl(−) clusters (n=2–15) using zero electron kinetic energy and partially discriminated threshold photodetachment spectroscopy , 2001 .

[32]  S. Bhattacharyya,et al.  Structure and vibrational spectroscopy of halide ion hydrates: a study based on genetic algorithm , 2001 .

[33]  C. Chaudhuri,et al.  Infrared spectra and isomeric structures of hydroxide ion-water clusters OH- (H2O)1-5: a comparison with H3O (H2O)1-5 , 2001 .

[34]  S. Yanase,et al.  Calculations of Reduced Partition Function Ratios of Hydrated Monoborate Anion by the ab initio MoleculaSr Orbital Theory , 2001 .

[35]  Marvin Johnson,et al.  Observation of resonant two-photon photodetachment of water cluster anions via femtosecond photoelectron spectroscopy , 2001 .

[36]  M. Masamura Ab initio molecular orbital study of OH−(H2O)n and SH−(H2O)n in the gas phase , 2001 .

[37]  K. Hiraoka,et al.  Characteristic Changes of Bond Energies for Gas-Phase Cluster Ions of Halide Ions with Methane and Chloromethanes , 2001 .

[38]  J. F. Haw,et al.  Gauge-Including Atomic Orbital Proton Chemical Shifts of Strong Hydrogen Bonds: The Importance of Electron Correlation , 2001 .

[39]  T. Ebata,et al.  OH stretching vibrations and hydrogen-bonded structures of 7-hydroxyquinoline-(H2O)1–3 investigated by IR–UV double-resonance spectroscopy , 2001 .

[40]  M. Parrinello,et al.  Surface solvation of halogen anions in water clusters: An ab initio molecular dynamics study of the Cl−(H2O)6 complex , 2001 .

[41]  W. Sheu,et al.  Iodine effect on the relaxation pathway of photoexcited I−(H2O)n clusters , 2001 .

[42]  Han Myoung Lee,et al.  Structures and spectra of iodide-water clusters I-(H2O)(n=1-6): An ab initio study , 2001 .

[43]  S. Kawauchi,et al.  Ion-specificity for hydrogen-bonding hydration of polymer: an approach by ab initio molecular orbital calculations , 2001 .

[44]  Marvin Johnson,et al.  Hydration of a structured excess charge distribution: Infrared spectroscopy of the O2−⋅(H2O)n, (1≤n≤5) clusters , 2001 .

[45]  Cory C. Pye,et al.  An ab Initio and Raman Investigation of Sulfate Ion Hydration , 2001 .

[46]  P. Weiser,et al.  The Cl−–CH4 anion dimer: mid infrared spectrum and ab initio calculations , 2000 .

[47]  P. Weiser,et al.  Rotationally resolved infrared spectrum of the Cl−–H2 anion complex , 2000 .

[48]  D. Chipman Hydrogen-Bonding Effects on Free-Radical Properties , 2000 .

[49]  B Brutschy,et al.  The structure of microsolvated benzene derivatives and the role of aromatic substituents. , 2000, Chemical reviews.

[50]  S. Irle,et al.  Direct ab initio variational calculation of vibrational energies of the H2O⋯Cl− complex and resolution of experimental differences , 2000 .

[51]  M. Probst,et al.  Quantum chemical and molecular dynamics study on the hydration of cyanide and thiocyanate anions , 2000 .

[52]  J. D. Craig,et al.  On the Nature of Fluoride Ion Hydration , 2000 .

[53]  F. Huisken,et al.  Infrared spectroscopy of size-selected water and methanol clusters. , 2000, Chemical reviews.

[54]  B. C. Garrett,et al.  The quantum vibrational dynamics of Cl−(H2O)n clusters , 2000 .

[55]  Han Myoung Lee,et al.  Comparative ab initio study of the structures, energetics and spectra of X−⋅(H2O)n=1–4 [X=F, Cl, Br, I] clusters , 2000 .

[56]  W. Robertson,et al.  The infrared predissociation spectra of Cl−·H2O·Arn (n=1–5): experimental determination of the influence of Ar solvent atoms , 2000 .

[57]  T. Driesner,et al.  Oxygen and hydrogen isotope fractionation by hydration complexes of Li+, Na+, K+, Mg2+, F−, Cl−, and Br−: a theoretical study , 2000 .

[58]  Sotiris S. Xantheas,et al.  Cooperativity and Hydrogen Bonding Network in Water Clusters , 2000 .

[59]  O. Dopfer,et al.  Infrared spectra of the phenol–Ar and phenol–N2 cations: proton-bound versus π-bound structures , 2000 .

[60]  Jerzy Leszczynski,et al.  Properties and nature of interactions in Cl−(H2O)nn=1,6 clusters: a theoretical study , 2000 .

[61]  W. Sheu,et al.  Precursors of the charge-transfer-to-solvent states in I-(H2O)n clusters , 2000 .

[62]  P. Weiser,et al.  Structural and energetic properties of the Br−–C2H2 anion complex from rotationally resolved mid-infrared spectra and ab initio calculations , 2000 .

[63]  J. Hynes,et al.  Frequency Shifts in the Hydrogen-Bonded OH Stretch in Halide−Water Clusters. The Importance of Charge Transfer , 2000 .

[64]  D. Tobias,et al.  Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols , 2000, Science.

[65]  Weber,et al.  Isolating the spectroscopic signature of a hydration shell with the use of clusters: superoxide tetrahydrate , 2000, Science.

[66]  D. Chipman,et al.  Dissociation of Ozonide in Water , 2000 .

[67]  K. Hashimoto,et al.  Theoretical Study of [Na(H2O)n]- (n = 1−4) Clusters: Geometries, Vertical Detachment Energies, and IR Spectra , 2000 .

[68]  E. Marcos,et al.  Theoretical Study of the Microsolvation of the Bromide Anion in Water, Methanol, and Acetonitrile: Ion−Solvent vs Solvent−Solvent Interactions , 2000 .

[69]  G. Chaban,et al.  Anharmonic Vibrational Spectroscopy of Hydrogen-Bonded Systems Directly Computed from ab Initio Potential Surfaces: (H2O)n, n = 2, 3; Cl-(H2O)n, n = 1, 2; H+(H2O)n, n = 1, 2; H2O−CH3OH , 2000 .

[70]  J. R. Pliego,et al.  Ab initio study of the hydroxide ion–water clusters: An accurate determination of the thermodynamic properties for the processes nH2O+OH−→HO−(H2O)n (n=1–4) , 2000 .

[71]  D. Salahub,et al.  Solvation of the Hydroxide Anion: A Combined DFT and Molecular Dynamics Study , 2000 .

[72]  H. Jónsson,et al.  Electric fields in ice and near water clusters , 2000 .

[73]  Nicholas J. Wright,et al.  Direct calculation of anharmonic vibrational states of polyatomic molecules using potential energy surfaces calculated from density functional theory , 2000 .

[74]  Ernest R. Davidson,et al.  Is the Hydrogen Bond in Water Dimer and Ice Covalent , 2000 .

[75]  Marvin Johnson,et al.  Vibrational spectroscopy of the F−·H2O complex via argon predissociation: photoinduced, intracluster proton transfer? , 2000 .

[76]  S. Iwata,et al.  Theoretical studies of the water-cluster anions containing the OH{e}HO structure: energies and harmonic frequencies , 1999 .

[77]  A. Rashin,et al.  On the structure and thermodynamics of solvated monoatomic ions using a hybrid solvation model , 1999 .

[78]  Marvin Johnson,et al.  Infrared spectroscopic observation of the argon isomer distribution in evaporative ensembles of I−⋅ROH⋅Arm (R=methyl, ethyl, isopropyl) clusters , 1999 .

[79]  Steen Brøndsted Nielsen,et al.  Spectroscopic Observation of Ion-Induced Water Dimer Dissociation in the X-·(H2O)2 (X = F, Cl, Br, I) Clusters , 1999 .

[80]  M. Duncan,et al.  ZEKE-PFI spectroscopy of the Al–(H2O) and Al–(D2O) complexes , 1999 .

[81]  M. Cordeiro,et al.  Quantum and simulation studies of X-(H2O)n systems , 1999 .

[82]  S. Iwata,et al.  THEORETICAL STUDY OF VIBRATIONAL SPECTRA FOR CL-(H2O) : TEMPERATURE DEPENDENCE AND THE INFLUENCE OF ARN (N = 1-3) , 1999 .

[83]  J. Qian,et al.  Spectroscopic studies of mass selected clusters of Sr+ solvated by H2O and D2O , 1999 .

[84]  W. L. Jorgensen,et al.  Selective Anion Complexation by a Calix[4]pyrrole Investigated by Monte Carlo Simulations , 1999 .

[85]  Michele Parrinello,et al.  Structural, electronic, and bonding properties of liquid water from first principles , 1999 .

[86]  G. Chaban,et al.  Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational self-consistent field , 1999 .

[87]  D. Estrin,et al.  Hybrid Quantum Classical Molecular Dynamics Simulation of the Proton-Transfer Reaction of HO- with HBr in Aqueous Clusters , 1999 .

[88]  T. Martínez,et al.  The solvation of chloride by methanol—surface versus interior cluster ion states , 1999 .

[89]  M. Vincent,et al.  Binding Energy of F(H2O)- and the Simulation of Fluoride Water Clusters Using a Hybrid QM/MM (Fluctuating Charge) Potential , 1999 .

[90]  Jongseob Kim,et al.  Structures, energetics, and spectra of fluoride–water clusters F−(H2O)n, n=1–6: Ab initio study , 1999 .

[91]  L. Corrales Dissociative Model of Water Clusters , 1999 .

[92]  Lehr,et al.  Electron solvation in finite systems: femtosecond dynamics of iodide. (Water)n anion clusters , 1999, Science.

[93]  Corey J. Weinheimer,et al.  Size selectivity by cation–π interactions: Solvation of K+ and Na+ by benzene and water , 1999 .

[94]  R. Watts,et al.  Probing Temperature Effects on the Hydrogen Bonding Network of the Cl-(H2O)2 Cluster , 1999 .

[95]  Marvin Johnson,et al.  An infrared study of the competition between hydrogen-bond networking and ionic solvation: Halide-dependent distortions of the water trimer in the X−⋅(H2O)3, (X=Cl, Br, I) systems , 1999 .

[96]  Sotiris S. Xantheas,et al.  A New Determination of the Fluoride Ion−Water Bond Energy , 1999 .

[97]  J. Hynes,et al.  CLUSTER ION THERMODYNAMIC PROPERTIES : THE LIQUID DROP MODEL REVISITED , 1999 .

[98]  O. Cheshnovsky,et al.  PHOTODETACHMENT STUDIES OF EXTENDED EXCITED STATES IN I-XEN CLUSTERS (N=1-54) , 1999 .

[99]  Marvin Johnson,et al.  Infrared spectroscopy of negatively charged water clusters: Evidence for a linear network , 1999 .

[100]  Marvin Johnson,et al.  Mass-selected “matrix isolation” infrared spectroscopy of the I−·(H2O)2 complex: making and breaking the inter-water hydrogen-bond , 1998 .

[101]  Marvin Johnson,et al.  Photoelectron spectroscopy of the `missing' hydrated electron clusters (H2O)−n, n=3, 5, 8 and 9: Isomers and continuity with the dominant clusters n=6, 7 and ⩾11 , 1998 .

[102]  Marvin Johnson,et al.  Vibrational Spectroscopy of the Ionic Hydrogen Bond: Fermi Resonances and Ion−Molecule Stretching Frequencies in the Binary X-·H2O (X = Cl, Br, I) Complexes via Argon Predissociation Spectroscopy , 1998 .

[103]  P. Wormer,et al.  Theoretical study of the OH−(H2O)2 system: Nature and importance of three-body interactions , 1998 .

[104]  Jongseob Kim,et al.  Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies , 1998 .

[105]  Nathaniel O. J. Malcolm,et al.  Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent , 1998 .

[106]  M. Beyer,et al.  Generation of hydrated iodide clusters I−(H2O)n by laser vaporization, their fragmentation and reactions with HCl , 1998 .

[107]  A. Servida,et al.  Molecular dynamic study of electric potentials in water clusters containing the sodium or chlorine atom , 1998 .

[108]  S. Nizkorodov,et al.  Infrared photodissociation spectra of CH3+–Arn complexes (n=1–8) , 1998 .

[109]  Marvin Johnson,et al.  Vibrational predissociation spectroscopy of the (H2O)6−⋅Arn, n⩾6, clusters , 1998 .

[110]  Marvin Johnson,et al.  PHOTOCHEMISTRY OF HALIDE ION-MOLECULE CLUSTERS : DIPOLE-BOUND EXCITED STATES AND THE CASE FOR ASYMMETRIC SOLVATION , 1998 .

[111]  W. L. Jorgensen,et al.  Monte Carlo Investigations of Selective Anion Complexation by a Bis(phenylurea) p-tert-Butylcalix[4]arene , 1998 .

[112]  J. Rasaiah,et al.  Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 °C , 1998 .

[113]  Marvin Johnson,et al.  VIBRATIONAL SPECTROSCOPY OF SMALL BR-.(H2O)N AND I-.(H2O)N CLUSTERS : INFRARED CHARACTERIZATION OF THE IONIC HYDROGEN BOND , 1998 .

[114]  U. Buck,et al.  Structure and Spectra of Three-Dimensional ( H 2 O ) n Clusters, n = 8 , 9 , 10 , 1998 .

[115]  J. Head,et al.  Geometry Optimization of Charged Molecules in an External Electric Field Applied to F-·H2O and I-·H2O , 1998 .

[116]  Jong-Ho Choi,et al.  Vibrational Spectroscopy of the Cl.(H2O)n Anionic Clusters, n = 1-5 , 1998 .

[117]  G. Markovich,et al.  Bound Delocalized Excited States in I{sup {minus}}Xe{sub n} Clusters , 1997 .

[118]  Kwang S. Kim,et al.  Molecular Cluster Bowl To Enclose a Single Electron , 1997 .

[119]  A. Viggiano,et al.  Temperature Dependences of the Rate Constants and Branching Ratios for the Reactions of OH-(H2O)0-4 + CH3Br , 1997 .

[120]  T. Truong,et al.  Microsolvation of Cl anion by water clusters: Pertubative Monte Carlo simulations using a hybrid HF/MM potential , 1997 .

[121]  J. Novoa,et al.  Density functional computations on the structure and stability of OH−(H2O)n (n = 1−3) clusters. A test study , 1997 .

[122]  Marvin Johnson,et al.  Photoinitiation of Gas-Phase SN2 Reactions through the Evans−Polanyi Excited State Surface , 1997 .

[123]  Mark A. Johnson,et al.  Vibrational predissociation spectra of I−·(H2O): isotopic labels and weakly bound complexes with Ar and N2 , 1997 .

[124]  J. V. Coe Connecting Cluster Anion Properties to Bulk: Ion Solvation Free Energy Trends with Cluster Size and the Surface vs Internal Nature of Iodide in Water Clusters , 1997 .

[125]  D. C. Clary,et al.  The Water Dipole Moment in Water Clusters , 1997, Science.

[126]  Michele Parrinello,et al.  On the Quantum Nature of the Shared Proton in Hydrogen Bonds , 1997, Science.

[127]  C. Bailey,et al.  Determination of the relative photodetachment cross sections of the two isomers of (H2O)6− using saturated photodetachment , 1997 .

[128]  Marvin Johnson,et al.  Electronic absorption spectra of size-selected hydrated electron clusters: (H2O)n−, n=6–50 , 1997 .

[129]  M. Berkowitz,et al.  Photodetachment spectra of Cl−(H2O)n clusters. Predictions and comparisons , 1997 .

[130]  U. Boesl Anion-ZEKE Spectroscopy of the Iodine Water Cluster , 1996 .

[131]  Marvin Johnson,et al.  Precursor of the Iaq− charge‐transfer‐to‐solvent (CTTS) band in I−⋅(H2O)n clusters , 1996 .

[132]  Marvin Johnson,et al.  Infrared Spectroscopy of the Hydrated Electron Clusters (H2O)n-, n = 6, 7: Evidence for Hydrogen Bonding to the Excess Electron , 1996 .

[133]  M. Johnson,et al.  Vibrational spectrum of I−(H2O) , 1996 .

[134]  T. Zwier THE SPECTROSCOPY OF SOLVATION IN HYDROGEN-BONDED AROMATIC CLUSTERS , 1996 .

[135]  A. Viggiano,et al.  GAS PHASE REACTIONS OF HYDRATED HALIDES WITH CHLORINE , 1996 .

[136]  S. J. Singer,et al.  ION SOLVATION IN MODEL POLAR CLUSTERS , 1996 .

[137]  J. Lisy,et al.  Vibrational predissociation spectroscopy of Cs+(H2O)1−5 , 1996 .

[138]  Keith E. Laidig,et al.  PROTON TRANSFER IN IONIC HYDROGEN BONDS , 1996 .

[139]  A. W. Castleman,et al.  Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter , 1996 .

[140]  Marvin Johnson,et al.  Autodetachment from vibrational levels of the O−2 A 2Πu resonance across its dissociation limit by photoexcitation from O−2 X 2Πg , 1996 .

[141]  K. Fuke,et al.  Photodissociation study on Ca+(H2O)n, n=1–6: Electron structure and photoinduced dehydrogenation reaction , 1996 .

[142]  Sotiris S. Xantheas,et al.  Quantitative Description of Hydrogen Bonding in Chloride−Water Clusters , 1996 .

[143]  Kwang S. Kim,et al.  Ab initio study of water hexamer anions , 1996 .

[144]  A. Castleman,et al.  Gas Phase Reactions of DNO3 with X-·(D2O)n, X = O, OD, O2, DO2, and O3 , 1996 .

[145]  S. Pullins,et al.  Photodissociation spectroscopy of Ca+–H2O and Ca+–D2O , 1996 .

[146]  A. Pudzianowski A Systematic Appraisal of Density Functional Methodologies for Hydrogen Bonding in Binary Ionic Complexes , 1996 .

[147]  S. Xantheas,et al.  Critical Study of Fluoride−Water Interactions , 1996 .

[148]  R. Saykally,et al.  Vibration-Rotation Tunneling Spectra of the Water Pentamer: Structure and Dynamics , 1996, Science.

[149]  D. Salahub,et al.  Zero-Pressure Thermal-Radiation-Induced Dissociation of Gas-Phase Cluster Ions: Comparison of Theory and Experiment for (H2O)2Cl- and (H2O)3Cl- , 1995 .

[150]  J. I. Brauman Some historical background on the double‐well potential model , 1995 .

[151]  Jortner,et al.  Dynamics of the formation of an electron bubble in liquid helium. , 1995, Physical review letters.

[152]  S. Xantheas Theoretical Study of Hydroxide Ion-Water Clusters , 1995 .

[153]  B. C. Garrett,et al.  Quantum Simulation of Aqueous Ionic Clusters , 1995 .

[154]  Marvin Johnson,et al.  Dipole‐bound excited states of the I−⋅CH3CN and I−⋅(CH3CN)2 ion–molecule complexes: Evidence for asymmetric solvation , 1995 .

[155]  Marvin Johnson,et al.  Observation of the dipole‐bound excited state of the I−⋅acetone ion‐molecule complex , 1995 .

[156]  P. Stampfli Theory for the electron affinity of clusters of rare gas atoms and polar molecules , 1995 .

[157]  N. Kestner,et al.  Density Functional Study of Short-Range Interaction Forces between Ions and Water Molecules , 1995 .

[158]  D. Rinaldi,et al.  Hydroxide Ion in Liquid Water: Structure, Energetics, and Proton Transfer Using a Mixed Discrete-Continuum ab Initio Model , 1995 .

[159]  K. Hermansson OH bonds in electric fields: electron densities and vibrational frequency shifts , 1995 .

[160]  C. Zhan,et al.  AB INITIO STUDIES ON THE STRUCTURES AND VERTICAL ELECTRON DETACHMENT ENERGIES OF COPPER-WATER NEGATIVE ION CLUSTERS CU- (H2O)N AND CUOH- (H2O)N-1 , 1995 .

[161]  Gil Markovich,et al.  Photoelectron spectroscopy of Cl−, Br−, and I− solvated in water clusters , 1994 .

[162]  A. Sax,et al.  Gas Phase Stabilities of Small Anions: Theory and Experiment in Cooperation , 1994 .

[163]  T. Dunning,et al.  Structures and Energetics of F-(H2O)n, n = 1-3 Clusters from ab Initio Calculations , 1994 .

[164]  Schermann,et al.  From 1/r to 1/r2 potentials: Electron exchange between Rydberg atoms and polar molecules. , 1994, Physical review letters.

[165]  P. Rossky,et al.  Pump–probe spectroscopy of the hydrated electron: A quantum molecular dynamics simulation , 1994 .

[166]  T. Zwier,et al.  Size-Specific Infrared Spectra of Benzene-(H2O)n Clusters (n = 1 through 7): Evidence for Noncyclic (H2O)n Structures , 1994, Science.

[167]  N. Kestner,et al.  Microscopic Study of Fluoride-Water Clusters , 1994 .

[168]  A. Nitzan,et al.  Solvation and Ionization near a Dielectric Surface , 1994 .

[169]  M. Berkowitz,et al.  Enthalpies of formation and stabilization energies of Br− (H2O)n (n=1,2, …, 15) clusters. Comparisons between molecular dynamics computer simulations and experiment , 1994 .

[170]  Max L. Berkowitz,et al.  Structures of Cl-(H2O)n and F -(H2O)n (n=2,3,..., 15) clusters. Molecular dynamics computer simulations , 1994 .

[171]  N. Kestner,et al.  Energy‐structure relationships for microscopic solvation of anions in water clusters , 1994 .

[172]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. I. Optimal structures and vibrational spectra , 1993 .

[173]  C. J. Tsai,et al.  Theoretical study of the (H2O)6 cluster , 1993 .

[174]  M. Berkowitz,et al.  Erratum: Many‐body effects in molecular dynamics simulations of Na+(H2O)n and Cl−(H2O)n clusters [J. Chem. Phys. 95, 1954 (1991)] , 1993 .

[175]  W. L. Jorgensen,et al.  Limited effects of polarization for Cl−(H2O)n and Na+(H2O)n clusters , 1993 .

[176]  M. Berkowitz,et al.  Stabilization energies of Cl−, Br−, and I− ions in water clusters , 1993 .

[177]  B. C. Garrett,et al.  Photoelectron spectra of the hydrated iodine anion from molecular dynamics simulations , 1993 .

[178]  D. Powell,et al.  The structure of Cl- in aqueous solution: an experimental determination of gClH(r) and gClO(r) , 1993 .

[179]  K. Hermansson Electric‐field effects on the OH vibrational frequency and infrared absorption intensity for water , 1993 .

[180]  M. Berkowitz,et al.  Ion solvation in water clusters , 1993 .

[181]  G. Markovich,et al.  The solvation of iodine anions in water clusters: PES studies , 1993 .

[182]  R. Caminiti,et al.  Study of the hydrogen-bonded (NH2CONH2)(H2O)2 and (NH2CONH2)(HF)2 complexes and of the interaction of H2O with metal cations and anions , 1992 .

[183]  J. Jortner Cluster size effects , 1992 .

[184]  M. Berkowitz,et al.  Structure and dynamics of Cl−(H2O)20 clusters: The effect of the polarizability and the charge of the ion , 1992 .

[185]  Z. Latajka Structure, energetics, and vibrational spectrum of H2O-X− (X = F, Cl) complexes , 1992 .

[186]  J. Dyke,et al.  An ab initio molecular orbital study of the anions O2 - · H2O and O2 - · CO2 , 1991 .

[187]  K. Hermansson Ab initio calculations of the fundamental OH frequency of bound OH- ions , 1991 .

[188]  M. Berkowitz,et al.  Many-body effects in molecular dynamics simulations of Na +(H2O)n and Cl-(H2O) n clusters , 1991 .

[189]  T. R. Tuttle,et al.  Solvated electrons : what is solvated ? , 1991 .

[190]  A. Castleman,et al.  Cluster ion dip spectroscopy of hydrogen bonded phenol(H2O)n clusters, n=0–4 , 1991 .

[191]  John S. Muenter,et al.  The dipole moment of water. I. Dipole moments and hyperfine properties of H2O and HDO in the ground and excited vibrational states , 1991 .

[192]  D. Truhlar,et al.  Molecular modeling of solvation. Cl−(D2O) , 1991 .

[193]  H. W. Sarkas,et al.  Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O)n− and (NH3)n− , 1991 .

[194]  A. W. Castleman,et al.  Mixed cluster ions as a structure probe: Experimental evidence for clathrate structure of (H2O)20H+ and (H2O)21H+ , 1991 .

[195]  P. Brucat,et al.  Vibrational structure of an electrostatically bound ion–water complex , 1990 .

[196]  Mitchio Okumura,et al.  Infrared spectra of the solvated hydronium ion: Vibrational predissociation spectroscopy of mass-selected H3O+.cntdot.(H2O)n.cntdot.(H2)m , 1990 .

[197]  H. W. Sarkas,et al.  Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)−n=2–69 , 1990 .

[198]  J. Michl,et al.  Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. Collision-Induced Dissociation and Successive Hydration Energies of Gaseous Cu+ with 1-4 Water Molecules , 1989 .

[199]  M. Symons Aquated electrons water(1-) anions, and hydroxide/hydronium units , 1988 .

[200]  G. W. Robinson,et al.  Reply to the comment aquated electrons, H/sub 2/O/sup /minus// anions, and OH/sup /minus///H/sub 3/O units , 1988 .

[201]  H. Schaefer,et al.  Infrared spectrum of F.hivin..cntdot.H2O , 1988 .

[202]  Shinichi Yamabe,et al.  Solvation of halide ions with water and acetonitrile in the gas phase , 1988 .

[203]  U. Landman,et al.  Electron localization in water clusters. I. Electron--water pseudopotential , 1988 .

[204]  Robert W. Field,et al.  Perturbations in the Spectra of Diatomic Molecules , 1986 .

[205]  Yuan-Pern Lee,et al.  Infrared spectra of the cluster ions H7O+3⋅H2 and H9O+4⋅H2 , 1986 .

[206]  A. Castleman,et al.  Thermochemical Data on Gas‐Phase Ion‐Molecule Association and Clustering Reactions , 1986 .

[207]  K. Kawaguchi,et al.  Infrared diode laser study of the hydrogen bifluoride anion: FHF− and FDF− , 1986 .

[208]  J. Owrutsky,et al.  The vibration-rotation spectrum of the hydroxide anion (OH - ) , 1985 .

[209]  P. Kollman,et al.  Water–water and water–ion potential functions including terms for many body effects , 1985 .

[210]  L. Viehland,et al.  Interaction potentials for the alkali ion—rare-gas systems , 1985 .

[211]  W. C. Lineberger,et al.  Photodestruction cross sections for mass-selected ion clusters: (CO2)n+ , 1984 .

[212]  W. C. Lineberger,et al.  Spectroscopy and dynamics of the dipole‐bound state of acetaldehyde enolate , 1984 .

[213]  D. Worsnop,et al.  Experimental observation of the negatively charged water dimer and other small (H2O)−n clusters , 1984 .

[214]  J. Fenn,et al.  Negative ion production with the electrospray ion source , 1984 .

[215]  D. Worsnop,et al.  Negatively charged water clusters: mass spectra of (H2O)n- and (D2O)n- , 1984 .

[216]  W. C. Lineberger,et al.  Improved flexibility in MODR using a supersonic jet source: Applications to CO+ and CN , 1984 .

[217]  P. Kebarle,et al.  Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas-phase equilibria measurements , 1984 .

[218]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[219]  Robert C. Hilborn,et al.  Einstein coefficients, cross sections, f values, dipole moments, and all that , 1982, physics/0202029.

[220]  E. Clementi,et al.  Study of the structure of molecular complexes. II. Energy surfaces for a water molecule in the field of a sodium or potassium cation , 1973 .

[221]  M. Arshadi,et al.  Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions , 1970 .

[222]  Michael J. Blandamer,et al.  Theory and applications of charge-transfer-to-solvent spectra , 1970 .

[223]  Jonathan A. Cooper,et al.  Spectral Distribution of Atomic Oscillator Strengths , 1968 .

[224]  G. Walrafen,et al.  Raman Spectral Studies of the Effects of Temperature on Water Structure , 1967 .

[225]  J. Boag,et al.  ABSORPTION SPECTRUM OF THE HYDRATED ELECTRON IN WATER AND IN AQUEOUS SOLUTIONS , 1962 .

[226]  W. Chupka Dissociation Energies of Some Gaseous Alkali Halide Complex Ions and the Hydrated Ion K(H2O) , 1959 .

[227]  R. Platzman,et al.  The role of the hydration configuration in electronic processes involving ions in aqueous solution , 1954 .

[228]  E. Wigner On the Behavior of Cross Sections Near Thresholds , 1948 .

[229]  Jr Richard A. Ogg Physical Interaction of Electrons with Liquid Dielectric Media. The Properties of Metal-Ammonia Solutions , 1946 .

[230]  C. K. Ingold The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1940, Nature.

[231]  Kenneth S. Pitzer,et al.  The Free Energy of Hydration of Gaseous Ions, and the Absolute Potential of the Normal Calomel Electrode , 1939 .

[232]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[233]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[234]  A. Lüchow,et al.  Structure and energetics of phenol(H2O)n, n⩽7: Quantum Monte Carlo calculations and double resonance experiments , 2001 .

[235]  Jongseob Kim,et al.  Charge transfer to solvent (CTTS) energies of small X−(H2O)n=1–4 (X=F, Cl, Br, I) clusters: Ab initio study , 2000 .

[236]  Seungwan Seo,et al.  Structure of the Water Hexamer Anion , 2000 .

[237]  S. Xantheas,et al.  Microscopic hydration of the fluoride anion , 1999 .

[238]  Gilles H. Peslherbe,et al.  Acid Ionization of HBr in a Small Water Cluster , 1999 .

[239]  Marvin Johnson,et al.  A CLUSTER STUDY OF ANIONIC HYDRATION : SPECTROSCOPIC CHARACTERIZATION OF THE I-.WN, 1 N 3, SUPRAMOLECULAR COMPLEXES AT THE PRIMARY STEPS OF SOLVATIO N , 1999 .

[240]  S. Shevkunov Computer modeling of the OH- hydration sheath at molecular level : The microstructure , 1998 .

[241]  G. Berthier,et al.  Theoretical study of the binding of the chloride anion to water and alcohols , 1997 .

[242]  M. Duncan Spectroscopy of metal ion complexes: gas-phase models for solvation. , 1997, Annual review of physical chemistry.

[243]  Axel Kulcke,et al.  Infrared spectroscopy of small size‐selected water clusters , 1996 .

[244]  K. Bowen,et al.  Photoelectron spectroscopy of the solvated anion clusters O−(Ar)n=1–26,34: Energetics and structure , 1995 .

[245]  U. Kaldor The Cl−NH3, Cl−H2O, F−NH3 and F−H2O clusters and their photoelectron spectra , 1994 .

[246]  J. Qian,et al.  Frequency- and time-resolved cluster photodissociation dynamics in Sr+(H2O)n, Sr+(NH3)n and Sr+(CH3OH)n , 1993 .

[247]  Sason Shaik,et al.  Theoretical aspects of physical organic chemistry : the S[N]2 mechanism , 1992 .

[248]  D. Lide Handbook of Chemistry and Physics , 1992 .

[249]  Timothy J. Lee A high-level ab initio study of the anionic hydrogen-bonded complexes FH-CN(-), FH-NC(-), H2O-CN(-), and H2O-NC(-) , 1989 .

[250]  N. Nachtrieb,et al.  Principles of Modern Chemistry , 1986 .

[251]  G. Ayers,et al.  The i.r. spectra of matrix isolated water species—I. Assignment of bands to (H2O)2, (D2O)2 and HDO dimer species in argon matrices. , 1976 .