Quantum entanglement percolation

Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to the striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network -- the 1D chain -- using imperfect entangled pairs of qubits.

[1]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[2]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[3]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[4]  Stefan Boettcher,et al.  Patchy percolation on a hierarchical network with small-world bonds. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[6]  Michael Siomau,et al.  Structural complexity of quantum networks , 2016, 1602.06154.

[7]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[8]  Emilio Hernández-García,et al.  Synchronization, quantum correlations and entanglement in oscillator networks , 2013, Scientific Reports.

[9]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[10]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[11]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[12]  S. Boettcher,et al.  Hierarchical regular small-world networks , 2007, 0712.1259.

[13]  Martí Cuquet,et al.  Entanglement percolation in quantum complex networks. , 2009, Physical review letters.

[14]  Raissa M. D'Souza,et al.  Anomalous critical and supercritical phenomena in explosive percolation , 2015, Nature Physics.

[15]  G. J. Lapeyre,et al.  Multipartite entanglement percolation , 2009, 0910.2438.

[16]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[17]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[20]  J. Cirac,et al.  Entanglement distribution in pure-state quantum networks , 2007, 0708.1025.

[21]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[22]  Stefan Boettcher,et al.  Ordinary percolation with discontinuous transitions , 2011, Nature Communications.

[23]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[24]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[25]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[26]  John Calsamiglia,et al.  Limited-path-length entanglement percolation in quantum complex networks , 2010, 1011.5630.

[27]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[28]  S. Bose,et al.  PURIFICATION VIA ENTANGLEMENT SWAPPING AND CONSERVED ENTANGLEMENT , 1998, quant-ph/9812013.