Some applications arising from the interactions between the theory of Catalan-like numbers and the ECO method
暂无分享,去创建一个
[1] George Polya,et al. On the number of certain lattice polygons , 1969 .
[2] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[3] M. Aigner. Catalan and other numbers: a recurrent theme , 2001 .
[4] Andrea Frosini,et al. On directed-convex polyominoes in a rectangle , 2005, Discret. Math..
[6] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[7] Mireille Bousquet-Mélou,et al. Generating functions for generating trees , 2002, Discret. Math..
[8] S. Golomb. Polyominoes: Puzzles, Patterns, Problems, and Packings , 1994 .
[9] Alberto Del Lungo,et al. ECO:a methodology for the enumeration of combinatorial objects , 1999 .
[10] Elena Barcucci,et al. ECO method and hill-free generalized Motzkin paths , 2001 .
[11] Luca Ferrari,et al. Production matrices , 2005, Adv. Appl. Math..
[12] Alberto Del Lungo,et al. Steep polyominoes, q-Motzkin numbers and q-Bessel functions , 1998, Discret. Math..
[13] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[14] G. Rota,et al. Finite operator calculus , 1975 .
[15] Martin Aigner,et al. A Characterization of the bell numbers , 1999, Discret. Math..
[16] Renzo Pinzani,et al. Approximating algebraic functions by means of rational ones , 2002, Theor. Comput. Sci..
[17] Frank Harary,et al. The enumeration of tree-like polyhexes † , 1970 .
[18] Martin Aigner,et al. Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.