Optimal Error Analysis of a FEM for Fractional Diffusion Problems by Energy Arguments

In this article, the piecewise-linear finite element method (FEM) is applied to approximate the solution of time-fractional diffusion equations on bounded convex domains. Standard energy arguments do not provide satisfactory results for such a problem due to the low regularity of its exact solution. Using a delicate energy analysis, a priori optimal error bounds in $$L^2(\varOmega )$$L2(Ω)-, $$H^1(\varOmega )$$H1(Ω)-norms, and a quasi-optimal bound in $$L^{\infty }(\varOmega )$$L∞(Ω)-norm are derived for the semidiscrete FEM for cases with smooth and nonsmooth initial data. The main tool of our analysis is based on a repeated use of an integral operator and use of a $$t^m$$tm type of weights to take care of the singular behavior of the continuous solution at $$t=0$$t=0. The generalized Leibniz formula for fractional derivatives is found to play a key role in our analysis. Numerical experiments are presented to illustrate some of the theoretical results.

[1]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[2]  Zhi-Zhong Sun,et al.  Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions , 2013, J. Sci. Comput..

[3]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[4]  Pekka Neittaanmäki,et al.  On a global superconvergence of the gradient of linear triangular elements , 1987 .

[5]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[6]  William McLean,et al.  Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.

[7]  Bangti Jin,et al.  An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid , 2014, Numerische Mathematik.

[8]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[9]  A. K. Pani,et al.  An Alternate Approach to Optimal L 2-Error Analysis of Semidiscrete Galerkin Methods for Linear Parabolic Problems with Nonsmooth Initial Data , 2011 .

[10]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[11]  D. Schötzau,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[12]  V. Thomée,et al.  Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .

[13]  W. McLean Regularity of solutions to a time-fractional diffusion equation , 2010 .

[14]  OPTIMAL ESTIMATES FOR THE SEMIDISCRETE GALERKIN METHOD APPLIED TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA , 2014 .

[15]  William McLean,et al.  Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..

[16]  William McLean,et al.  Fast Summation by Interval Clustering for an Evolution Equation with Memory , 2012, SIAM J. Sci. Comput..

[17]  CHANG-MING CHEN,et al.  Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation , 2012, Math. Comput..

[18]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[19]  K. Mustapha,et al.  Finite volume element method for two-dimensional fractional subdiffusion problems , 2015, 1510.07377.

[20]  V. Thomée,et al.  Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .

[21]  Kassem Mustapha,et al.  A hybridizable discontinuous Galerkin method for fractional diffusion problems , 2014, Numerische Mathematik.

[22]  J. Pasciak,et al.  Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.

[23]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .