Optimal Error Analysis of a FEM for Fractional Diffusion Problems by Energy Arguments
暂无分享,去创建一个
[1] Raytcho D. Lazarov,et al. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..
[2] Zhi-Zhong Sun,et al. Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions , 2013, J. Sci. Comput..
[3] K. Mustapha. An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .
[4] Pekka Neittaanmäki,et al. On a global superconvergence of the gradient of linear triangular elements , 1987 .
[5] Zhi-Zhong Sun,et al. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..
[6] William McLean,et al. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.
[7] Bangti Jin,et al. An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid , 2014, Numerische Mathematik.
[8] S. Agmon,et al. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .
[9] A. K. Pani,et al. An Alternate Approach to Optimal L 2-Error Analysis of Semidiscrete Galerkin Methods for Linear Parabolic Problems with Nonsmooth Initial Data , 2011 .
[10] Eduardo Cuesta,et al. Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..
[11] D. Schötzau,et al. Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .
[12] V. Thomée,et al. Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .
[13] W. McLean. Regularity of solutions to a time-fractional diffusion equation , 2010 .
[14] OPTIMAL ESTIMATES FOR THE SEMIDISCRETE GALERKIN METHOD APPLIED TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA , 2014 .
[15] William McLean,et al. Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..
[16] William McLean,et al. Fast Summation by Interval Clustering for an Evolution Equation with Memory , 2012, SIAM J. Sci. Comput..
[17] CHANG-MING CHEN,et al. Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation , 2012, Math. Comput..
[18] Mingrong Cui,et al. Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..
[19] K. Mustapha,et al. Finite volume element method for two-dimensional fractional subdiffusion problems , 2015, 1510.07377.
[20] V. Thomée,et al. Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .
[21] Kassem Mustapha,et al. A hybridizable discontinuous Galerkin method for fractional diffusion problems , 2014, Numerische Mathematik.
[22] J. Pasciak,et al. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.
[23] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .