Synchronous generator third-order model parameter estimation using online experimental data

A method to estimate the dynamic parameters of the commonly used third-order d - q model of a synchronous generator, based on measured electrical power, reactive power, terminal voltage, field current, field voltage and rotor angle following a small perturbation of the field voltage, is described. The parameters are estimated from two newly developed nonlinear functions for electrical power and terminal voltage by using a nonlinear least squares (NLS) algorithm. Results of simulation studies and experimental data collected from an 80 MVA, 10.5 kV generator show the efficacy of the proposed method and also reveal that the proposed method is valid for a wide range of operating conditions. For cases where rotor angle is not available, a new method for rotor angle estimation is also proposed.

[1]  Gerald Manchur,et al.  Generator Models Established by Frequency Response Tests on a 555 MVA Machine , 1972 .

[2]  Y. H. Ku,et al.  Electric Power System Dynamics , 1983 .

[3]  A. M. El-Serafi,et al.  Determination of the parameters representing the cross-magnetizing effect in saturated synchronous machines , 1993 .

[4]  P. Kundur,et al.  Power system stability and control , 1994 .

[5]  Q. H. Wu,et al.  Estimation of generator parameters using evolutionary programming , 1994 .

[6]  Chung-Liang Chang,et al.  On-line measurement-based model parameter estimation for synchronous generators: model development and identification schemes , 1994 .

[7]  Ali Keyhani,et al.  On-line synchronous machine parameter estimation from small disturbance operating data , 1995 .

[8]  O. P. Malik,et al.  On-line identification of synchronous generator using neural networks , 1996, Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering.

[9]  Jianguo Jiang,et al.  On-line estimation of variable parameters of synchronous machines using a novel adaptive algorithm. Estimation and experimental verification , 1997 .

[10]  Jianguo Jiang,et al.  On-line estimation of variable parameters of synchronous machines using a novel adaptive algorithm-principles and procedures , 1997 .

[11]  Ali Keyhani,et al.  Neural network observers for on-line tracking of synchronous generator parameters , 1999 .

[12]  A. Keyhani,et al.  Iteratively reweighted least squares for maximum likelihood identification of synchronous machine parameters from on-line tests , 1999 .

[13]  Jiang Tie The SVD Applied to the Identification of the Basic Parameters of Synchronous Machine , 2000 .

[14]  E. Levi,et al.  Impact of dynamic cross-saturation on accuracy of saturated synchronous machine models , 2000 .

[15]  Innocent Kamwa,et al.  Unbalanced transient-based finite-element modeling of large generators , 2000 .

[16]  Ali Keyhani,et al.  An algebraic approach for identifying operating point dependent parameters of synchronous machines using orthogonal series expansions , 2001 .

[17]  Ali Keyhani,et al.  Synchronous machine parameter estimation using the Hartley series , 2001 .

[18]  Ali Keyhani,et al.  Neural network based modeling of a large steam turbine-generator rotor body parameters from on-line disturbance data , 2001 .

[19]  Om P. Malik,et al.  Identification of physical parameters of a synchronous generator from on-line measurements , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[20]  O.P. Malik,et al.  Identification of physical parameters of a synchronous Generator from online measurements , 2004, IEEE Transactions on Energy Conversion.

[21]  O. P. Malik,et al.  Identification of Heffron-Phillips model parameters for synchronous generators using online measurements , 2004 .