Nekhoroshev estimates for quasi-convex hamiltonian systems

[1]  G. Benettin,et al.  A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems , 1985 .

[2]  P. Lochak,et al.  Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. , 1992, Chaos.

[3]  L. Galgani,et al.  Rigorous estimates for the series expansions of Hamiltonian perturbation theory , 1985 .

[4]  N. Nekhoroshev Behavior of Hamiltonian systems close to integrable , 2020, Hamiltonian Dynamical Systems.

[5]  A. M. Molchanov The resonant structure of the solar system: The law of planetary distances , 1968 .

[6]  A. Giorgilli,et al.  Exponential stability for time dependent potentials , 1992 .

[7]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[8]  Jürgen Pöschel,et al.  Integrability of Hamiltonian systems on cantor sets , 1982 .

[9]  Antonio Giorgilli,et al.  Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part I , 1987 .

[10]  A. M. Molchanov The reality of resonances in the solar system , 1969 .

[11]  P. Lochak,et al.  Canonical perturbation theory via simultaneous approximation , 1992 .

[12]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[13]  J. Pöschel Integrability of hamiltonian systems on cantor sets , 1982 .

[14]  Giovanni Gallavotti,et al.  Stability of motions near resonances in quasi-integrable Hamiltonian systems , 1986 .

[15]  Francesco Fassò,et al.  Lie series method for vector fields and Hamiltonian perturbation theory , 1990 .

[16]  V. Arnold,et al.  Dynamical Systems III , 1987 .