Recent advances in computational phylodynamics.

Time-stamped, trait-annotated phylogenetic trees built from virus genome data are increasingly used for outbreak investigation and monitoring ongoing epidemics. This routinely involves reconstructing the spatial and demographic processes from large data sets to help unveil the patterns and drivers of virus spread. Such phylodynamic inferences can however become quite time-consuming as the dimensions of the data increase, which has led to a myriad of approaches that aim to tackle this complexity. To elucidate the current state of the art in the field of phylodynamics, we discuss recent developments in Bayesian inference and accompanying software, highlight methods for improving computational efficiency and relevant visualisation tools. As an alternative to fully Bayesian approaches, we touch upon conditional software pipelines that compromise between statistical coherence and turn-around-time, and we highlight the available software packages. Finally, we outline future directions that may facilitate the large-scale tracking of epidemics in near real time.

[1]  Trevor Bedford,et al.  Virus genomes reveal factors that spread and sustained the Ebola epidemic , 2017, Nature.

[2]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[3]  H. Romero,et al.  Bayesian coalescent inference of hepatitis A virus populations: evolutionary rates and patterns. , 2007, The Journal of general virology.

[4]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[5]  R. A. McKay,et al.  1970s and ‘Patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in North America , 2016, Nature.

[6]  David Welch,et al.  Efficient Bayesian inference under the structured coalescent , 2014, Bioinform..

[7]  C. Viboud,et al.  Explorer The genomic and epidemiological dynamics of human influenza A virus , 2016 .

[8]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[9]  Vu C. Dinh,et al.  Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals , 2017, bioRxiv.

[10]  Michael Worobey,et al.  A synchronized global sweep of the internal genes of modern avian influenza virus , 2014, Nature.

[11]  Geoff Nicholls,et al.  Using Temporally Spaced Sequences to Simultaneously Estimate Migration Rates, Mutation Rate and Population Sizes in Measurably Evolving Populations , 2004, Genetics.

[12]  Olivier Gascuel,et al.  Searching for virus phylotypes , 2013, Bioinform..

[13]  L. Wain,et al.  Chimpanzee Reservoirs of Pandemic and Nonpandemic HIV-1 , 2006, Science.

[14]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[15]  Sergei L. Kosakovsky Pond,et al.  Phylodynamics of Infectious Disease Epidemics , 2009, Genetics.

[16]  J. Kingman On the genealogy of large populations , 1982, Journal of Applied Probability.

[17]  Cécile Viboud,et al.  Global migration of influenza A viruses in swine , 2015, Nature Communications.

[18]  Khalil Abudahab,et al.  Microreact: visualizing and sharing data for genomic epidemiology and phylogeography , 2016, Microbial genomics.

[19]  Marc A Suchard,et al.  Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates. , 2016, Systematic biology.

[20]  M. Suchard,et al.  Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2 , 2014, PLoS pathogens.

[21]  John P Huelsenbeck,et al.  A dirichlet process prior for estimating lineage-specific substitution rates. , 2012, Molecular biology and evolution.

[22]  Tanja Stadler,et al.  The Structured Coalescent and Its Approximations , 2016, bioRxiv.

[23]  Xavier Didelot,et al.  Modeling the Growth and Decline of Pathogen Effective Population Size Provides Insight into Epidemic Dynamics and Drivers of Antimicrobial Resistance , 2017, bioRxiv.

[24]  Daniel J. Wilson,et al.  Coalescent inference for infectious disease: meta-analysis of hepatitis C , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  Vu C. Dinh,et al.  Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo , 2016, Systematic biology.

[26]  Rebecca Rose,et al.  Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data , 2016, BMC Bioinformatics.

[27]  M. Suchard,et al.  Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. , 2008, Molecular biology and evolution.

[28]  David A. Matthews,et al.  Real-time, portable genome sequencing for Ebola surveillance , 2016, Nature.

[29]  Trevor Bedford,et al.  Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples , 2017, Nature Protocols.

[30]  Trevor Bedford,et al.  Nextstrain: real-time tracking of pathogen evolution , 2017, bioRxiv.

[31]  Erik M. Volz,et al.  Scalable relaxed clock phylogenetic dating , 2017 .

[32]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[33]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[34]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[35]  O. Pybus,et al.  Phylogeography and epidemic history of hepatitis C virus genotype 4 in Africa , 2014, Virology.

[36]  Daniel L. Ayres,et al.  Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.

[37]  Guy Baele,et al.  PhyloGeoTool: interactively exploring large phylogenies in an epidemiological context , 2017, Bioinform..

[38]  Richard A Neher,et al.  TreeTime: Maximum-likelihood phylodynamic analysis , 2017, bioRxiv.

[39]  O. Pybus,et al.  The epidemiology and iatrogenic transmission of hepatitis C virus in Egypt: a Bayesian coalescent approach. , 2003, Molecular biology and evolution.

[40]  M. Suchard,et al.  Phylogeography takes a relaxed random walk in continuous space and time. , 2010, Molecular biology and evolution.

[41]  Olivier Gascuel,et al.  Fast Dating Using Least-Squares Criteria and Algorithms , 2015, Systematic biology.

[42]  John J. Welch,et al.  Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline , 2011, Current Biology.

[43]  Forrest W. Crawford,et al.  Unifying the spatial epidemiology and molecular evolution of emerging epidemics , 2012, Proceedings of the National Academy of Sciences.

[44]  Mandev S. Gill,et al.  Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. , 2013, Molecular biology and evolution.

[45]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[46]  M. Suchard,et al.  SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. , 2016, Molecular biology and evolution.

[47]  Andrew Rambaut,et al.  Evolutionary analysis of the dynamics of viral infectious disease , 2009, Nature Reviews Genetics.

[48]  Guy Baele,et al.  The epidemic dynamics of hepatitis C virus subtypes 4a and 4d in Saudi Arabia , 2017, Scientific Reports.

[49]  Trevor Bedford,et al.  Viral Phylodynamics , 2013, PLoS Comput. Biol..

[50]  Michael J. Landis,et al.  RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language , 2016, Systematic biology.

[51]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[52]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[53]  A. Stamatakis,et al.  The Phylogenetic Likelihood Library , 2014, Systematic biology.

[54]  Marc A Suchard,et al.  Fast, accurate and simulation-free stochastic mapping , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[55]  Daniel L. Ayres,et al.  BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics , 2011, Systematic biology.

[56]  Nicola De Maio,et al.  New Routes to Phylogeography: A Bayesian Structured Coalescent Approximation , 2015, PLoS genetics.

[57]  Trevor Bedford,et al.  Integrating influenza antigenic dynamics with molecular evolution , 2013, eLife.

[58]  Erik M. Volz,et al.  Complex Population Dynamics and the Coalescent Under Neutrality , 2012, Genetics.

[59]  Guy Baele,et al.  Emerging Concepts of Data Integration in Pathogen Phylodynamics , 2016, Systematic biology.

[60]  Alexandros Stamatakis,et al.  Aligning short reads to reference alignments and trees , 2011, Bioinform..

[61]  J. Kingman On the genealogy of large populations , 1982 .

[62]  Leslie A Real,et al.  A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus , 2007, Proceedings of the National Academy of Sciences.

[63]  Marc A Suchard,et al.  Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[64]  Rebecca Rose,et al.  SERAPHIM: studying environmental rasters and phylogenetically informed movements , 2016, Bioinform..

[65]  Derrick J. Zwickl Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion , 2006 .

[66]  Tanja Stadler,et al.  Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth–death SIR model , 2013, Journal of The Royal Society Interface.

[67]  Marius Gilbert,et al.  Using Viral Gene Sequences to Compare and Explain the Heterogeneous Spatial Dynamics of Virus Epidemics , 2017, Molecular biology and evolution.

[68]  Mandev S. Gill,et al.  A Relaxed Directional Random Walk Model for Phylogenetic Trait Evolution. , 2016, Systematic biology.

[69]  S. Bonhoeffer,et al.  Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV) , 2012, Proceedings of the National Academy of Sciences.

[70]  Aaron M. King,et al.  Infectious Disease Dynamics Inferred from Genetic Data via Sequential Monte Carlo , 2016, bioRxiv.

[71]  Peter Mertens,et al.  Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference , 2017, Proceedings of the Royal Society B: Biological Sciences.

[72]  A. Stamatakis,et al.  Efficient Detection of Repeating Sites to Accelerate Phylogenetic Likelihood Calculations , 2016, bioRxiv.

[73]  David A. Rasmussen,et al.  Estimating Epidemic Incidence and Prevalence from Genomic Data , 2018, bioRxiv.

[74]  A. Lusis,et al.  Considerations for the design of omics studies , 2017 .

[75]  Marc A. Suchard,et al.  SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics , 2011, Bioinform..

[76]  M. Suchard,et al.  The early spread and epidemic ignition of HIV-1 in human populations , 2014, Science.

[77]  Guy Baele,et al.  Bayesian Inference Reveals Host-Specific Contributions to the Epidemic Expansion of Influenza A H5N1. , 2015, Molecular biology and evolution.

[78]  Alexey M. Kozlov,et al.  ExaML version 3: a tool for phylogenomic analyses on supercomputers , 2015, Bioinform..

[79]  Andrew Meade,et al.  Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes , 2007, Bioinform..

[80]  Colin A. Russell,et al.  The Global Circulation of Seasonal Influenza A (H3N2) Viruses , 2008, Science.

[81]  E. Virginia Armbrust,et al.  pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree , 2010, BMC Bioinformatics.

[82]  O. Pybus,et al.  Bayesian coalescent inference of past population dynamics from molecular sequences. , 2005, Molecular biology and evolution.

[83]  O. Pybus,et al.  Unifying the Epidemiological and Evolutionary Dynamics of Pathogens , 2004, Science.

[84]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.