Structure-property correlations in model composite materials.

We investigate the effective properties (conductivity, diffusivity and elastic moduli) of model random composite media derived from Gaussian random fields and overlapping hollow spheres. The morphologies generated in the models exhibit low percolation thresholds and give a realistic representation of the complex microstructure observed in many classes of composites. The statistical correlation functions of the models are derived and used to evaluate rigorous bounds on each property. Simulation of the effective conductivity is used to demonstrate the applicability of the bounds. The key morphological features which effect composite properties are discussed.