A modulated gradient model for large-eddy simulation: Application to a neutral atmospheric boundary layer

The subgrid-scale (SGS) parametrization represents a critical component of a successful large-eddy simulation (LES). It is known that in LES of high-Reynolds-number atmospheric boundary layer turbulence, standard eddy-viscosity models poorly predict mean shear in the near-wall region and yield erroneous velocity profiles. In this paper, a modulated gradient model is proposed. This approach is based on the Taylor expansion of the SGS stress and uses local equilibrium hypothesis to evaluate the SGS kinetic energy. To ensure numerical stability, a clipping procedure is used to avoid local kinetic energy transfer from unresolved to resolved scales. Two approaches are considered to specify the model coefficient: a constant value of 1 and a simple correction to account for the effects of the clipping procedure on the SGS energy production rate. The model is assessed through a systematic comparison with well-established empirical formulations and theoretical predictions of a variety of flow statistics in a neutr...

[1]  G. Katul,et al.  A Theoretical and Experimental Investigation of Energy-Containing Scales in the Dynamic Sublayer of Boundary-Layer Flows , 1998 .

[2]  James G. Brasseur,et al.  Three-Dimensional Buoyancy- and Shear-Induced Local Structure of the Atmospheric Boundary Layer , 1998 .

[3]  Ivan Marusic,et al.  Evidence of very long meandering features in the logarithmic region of turbulent boundary layers , 2007, Journal of Fluid Mechanics.

[4]  Suresh Menon,et al.  A new dynamic one-equation subgrid-scale model for large eddy simulations , 1995 .

[5]  Akira Yoshizawa,et al.  A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows , 1985 .

[6]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[7]  Rob Stoll,et al.  Effect of Roughness on Surface Boundary Conditions for Large-Eddy Simulation , 2006 .

[8]  Fernando Porté-Agel,et al.  Evaluation of dynamic subgrid-scale models in large-eddy simulations of neutral turbulent flow over a two-dimensional sinusoidal hill , 2007 .

[9]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[10]  P. Moin,et al.  Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer , 2009, Journal of Fluid Mechanics.

[11]  Marc B. Parlange,et al.  Natural integration of scalar fluxes from complex terrain , 1999 .

[12]  F. Clauser The Structure of Turbulent Shear Flow , 1957, Nature.

[13]  J. Ferziger,et al.  Evaluation of subgrid-scale models using an accurately simulated turbulent flow , 1979, Journal of Fluid Mechanics.

[14]  Chad W. Higgins,et al.  Alignment Trends of Velocity Gradients and Subgrid-Scale Fluxes in the Turbulent Atmospheric Boundary Layer , 2003 .

[15]  Seyed G. Saddoughi,et al.  Local isotropy in turbulent boundary layers at high Reynolds number , 1994, Journal of Fluid Mechanics.

[16]  Fernando Porté-Agel,et al.  A Scale-Dependent Dynamic Model for Scalar Transport in Large-Eddy Simulations of the Atmospheric Boundary Layer , 2001 .

[17]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[18]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[19]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[20]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[21]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[22]  Marc B. Parlange,et al.  Probability density functions of turbulent velocity and temperature in the atmospheric surface layer , 1996 .

[23]  J. Brasseur,et al.  Characteristics of subgrid-resolved-scale dynamics in anisotropic turbulence, with application to rough-wall boundary layers , 1999 .

[24]  I. Marusic,et al.  Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow , 2006, Journal of Fluid Mechanics.

[25]  F. A. Schraub,et al.  The structure of turbulent boundary layers , 1967, Journal of Fluid Mechanics.

[26]  B. Geurts,et al.  Large-eddy simulation of the turbulent mixing layer , 1997, Journal of Fluid Mechanics.

[27]  J. Brasseur,et al.  Analysis of Monin–Obukhov similarity from large-eddy simulation , 1997, Journal of Fluid Mechanics.

[28]  T. Kármán Mechanical similitude and turbulence , 1931 .

[29]  C. Moeng A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence , 1984 .

[30]  The performance of dynamic subgrid-scale models in the large eddy simulation of rotating homogeneous turbulence , 2001 .

[31]  Branko Kosovic,et al.  Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers , 1997, Journal of Fluid Mechanics.

[32]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[33]  S. Menon,et al.  Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence , 1994 .

[34]  J. Ferziger,et al.  Explicit Filtering and Reconstruction Turbulence Modeling for Large-Eddy Simulation of Neutral Boundary Layer Flow , 2005 .

[35]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[36]  C. Rutland,et al.  Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model , 2002 .

[37]  J. Deardorff,et al.  The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospheric Turbulence , 1973 .

[38]  P. Sullivan,et al.  A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows , 1994 .

[39]  M. S. Chong,et al.  A theoretical and experimental study of wall turbulence , 1986, Journal of Fluid Mechanics.

[40]  U. Schumann,et al.  Large‐eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes , 1994 .

[41]  J. McWilliams,et al.  A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows , 1994 .

[42]  Petar Vukoslavcevic,et al.  The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties , 1991, Journal of Fluid Mechanics.

[43]  Christopher J. Rutland,et al.  A priori tests of one-equation LES modeling of rotating turbulence , 2007 .

[44]  Christopher J. Rutland,et al.  a Posteriori Tests of One-Equation les Modeling of Rotating Turbulence , 2008 .

[45]  Nagi N. Mansour,et al.  Energy transfer in rotating turbulence , 1997, Journal of Fluid Mechanics.

[46]  F. Porté-Agel,et al.  A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer , 2000, Journal of Fluid Mechanics.

[47]  D. Thomson,et al.  Stochastic backscatter in large-eddy simulations of boundary layers , 1992, Journal of Fluid Mechanics.

[48]  U. Piomelli High Reynolds number calculations using the dynamic subgrid‐scale stress model , 1993 .

[49]  Leslie M. Smith,et al.  Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence , 1999 .

[50]  Ronald J. Adrian,et al.  Spanwise structure and scale growth in turbulent boundary layers , 2003, Journal of Fluid Mechanics.

[51]  C. Meneveau,et al.  On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet , 1994, Journal of Fluid Mechanics.

[52]  K. Horiuti Transformation properties of dynamic subgrid-scale models in a frame of reference undergoing rotation , 2006 .