Numerical simulations of SHPB experiments for the dynamic compressive strength and failure of ceramics

Complementary to a study of the compressive strength of ceramic as a function of strain rate and confinement, numerical simulations of the split-Hopkinson pressure bar (SHPB) experiments have been performed using the two-dimensional wave propagation computer program HEMP. The numerical effort had two main thrusts. Firstly, the interpretation of the experimental data relies on several assumptions. The numerical simulations were used to investigate the validity of these assumptions. The second part of the effort focused on computing the idealized constitutive response of a ceramic within the SHPB experiment. These numerical results were then compared against experimental data. Idealized models examined included a perfectly elastic material, an elastic-perfectly plastic material, and an elastic material with failure. Post-failure material was modeled as having either no strength, or a strength proportional to the mean stress. The effects of confinement were also studied. Conclusions concerning the dynamic behavior of a ceramic up to and after failure are drawn from the numerical study.