Reconstrucción del patrón de consumo eléctrico a partir de Big Data mediante técnica de MapReduce

The work presents the performance of the MapReduce technique to reconstruct the load curve from a previously stored amount of information coming from smart metering of electrical energy and currently considered as Big Data. The management of information in the stage of an intelligent electrical network considered as a System of Management of Measured Data or MDMS needs reducing the times with respect to the reports that are required in a certain moment for decision making in relation to the electrical demand response. Therefore, this paper proposes the use of MapReduce as a technique to obtain information of the load curve in a suitable time to obtain trends and statistics related to the residential electric pattern.

[1]  Esteban Inga,et al.  Optimal Placement of Universal Data Aggregation Points for Smart Electric Metering based on Hybrid Wireless , 2017, SSN.

[2]  Bo Zhang,et al.  Probabilistic graphical model based residential energy behavioral analysis on hybrid computing platform , 2016, 2016 China International Conference on Electricity Distribution (CICED).

[3]  Jignesh M. Patel,et al.  Energy management for MapReduce clusters , 2010, Proc. VLDB Endow..

[4]  Wojciech M. Golab,et al.  Benchmarking Smart Meter Data Analytics , 2015, EDBT.

[5]  Christian Wietfeld,et al.  RF Mesh Systems for Smart Metering: System Architecture and Performance , 2010, 2010 First IEEE International Conference on Smart Grid Communications.

[6]  Esteban Inga,et al.  Matched Channel Allocation for Advanced Metering Infrastructure based on Cognitive Mobile Virtual Network Operator , 2016, IEEE Latin America Transactions.

[7]  Esteban Inga,et al.  Optimal Planning for Deployment of FiWi Networks based on Hybrid Heuristic Process , 2017, IEEE Latin America Transactions.

[8]  Arturo Peralta,et al.  Optimal scalability of fiwi networks based on multistage stochastic programming and policies , 2017, IEEE/OSA Journal of Optical Communications and Networking.

[9]  Esteban Inga-Ortega,et al.  Electrical load curve reconstruction required for demand response using compressed sensing techniques , 2017, 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America).

[10]  Roberto Hincapie,et al.  FiWi Network Planning for Smart Metering Based on Multistage Stochastic Programming , 2015, IEEE Latin America Transactions.

[11]  Vaibhav Fanibhare,et al.  SmartGrids: MapReduce framework using Hadoop , 2016, 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN).

[12]  Weisong Shi,et al.  Energy-Aware Scheduling of MapReduce Jobs for Big Data Applications , 2015, IEEE Transactions on Parallel and Distributed Systems.

[13]  Sergio Luján-Mora,et al.  Metodologías Sugeridas de Evaluación y Selección de Software de Arquitectura Empresarial para la Digitalización del Conocimiento , 2017 .

[14]  Shenxing Shi,et al.  SKM: Scalable Key Management for Advanced Metering Infrastructure in Smart Grids , 2014, IEEE Transactions on Industrial Electronics.

[15]  Gabriel Antoniu,et al.  Chronos: Failure-aware scheduling in shared Hadoop clusters , 2015, 2015 IEEE International Conference on Big Data (Big Data).

[16]  Mehdi Arian,et al.  Intelligent migration from smart metering to smart grid , 2011, 2011 IEEE Power Engineering and Automation Conference.

[17]  Miriam A. M. Capretz,et al.  Energy Consumption Prediction with Big Data: Balancing Prediction Accuracy and Computational Resources , 2016, 2016 IEEE International Congress on Big Data (BigData Congress).

[18]  Silvia M. Figueira,et al.  Towards efficient resource provisioning in MapReduce , 2016, J. Parallel Distributed Comput..

[19]  Idelfonso Tafur Monroy,et al.  Optimal dimensioning of FiWi networks over advanced metering infrastructure for the smart grid , 2015, 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM).

[20]  Bing Zhang Analysis of residential electricity consumption behavior based on the improved Apriori algorithm , 2017 .

[21]  Md. Zakirul Alam Bhuiyan,et al.  Security, Privacy, and Anonymity in Computation, Communication, and Storage , 2019, Lecture Notes in Computer Science.

[22]  Hussnain Ahmed Applying Big Data analytics for energy efficiency. , 2014 .

[23]  Yasser Abdel-Rady I. Mohamed,et al.  Big data framework for analytics in smart grids , 2017 .

[24]  Esteban Inga,et al.  Evaluación de la Infraestructura de Medición y la Respuesta de la Demanda , 2016 .

[25]  Alfredo Vaccaro,et al.  On-line smart grids optimization by case-based reasoning on big data , 2016, 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS).

[26]  Rose Qingyang Hu,et al.  Scalable Distributed Communication Architectures to Support Advanced Metering Infrastructure in Smart Grid , 2012, IEEE Transactions on Parallel and Distributed Systems.

[27]  Esteban Inga,et al.  Scalable Route Map for Advanced Metering Infrastructure Based on Optimal Routing of Wireless Heterogeneous Networks , 2017, IEEE Wireless Communications.

[28]  Han Yu,et al.  MapReduce short jobs optimization based on resource reuse , 2016, Microprocess. Microsystems.

[29]  Miriam A. M. Capretz,et al.  Challenges for MapReduce in Big Data , 2014, 2014 IEEE World Congress on Services.

[30]  Esteban Inga,et al.  Electrical Consumption Pattern Base on Meter Data Management System Using Big Data Techniques , 2017, 2017 International Conference on Information Systems and Computer Science (INCISCOS).