Comparative genomics and bioenergetics.

Bacterial and archaeal complete genome sequences have been obtained from a wide range of evolutionary lines, which allows some general conclusions about the phylogenetic distribution and evolution of bioenergetic pathways to be drawn. In particular, I searched in the complete genomes for key enzymes involved in aerobic and anaerobic respiratory pathways and in photosynthesis, and mapped them into an rRNA tree of sequenced species. The phylogenetic distribution of these enzymes is very irregular, and clearly shows the diverse strategies of energy conservation used by prokaryotes. In addition, a thorough phylogenetic analysis of other bioenergetic protein families of wide distribution reveals a complex evolutionary history for the respective genes. A parsimonious explanation for these complex phylogenetic patterns and for the irregular distribution of metabolic pathways is that the last common ancestor of Bacteria and Archaea contained several members of every gene family as a consequence of previous gene or genome duplications, while different patterns of gene loss occurred during the evolution of every gene family. This would imply that the last universal ancestor was a bioenergetically sophisticated organism. Finally, important steps that occurred during the evolution of energetic machineries, such as the early evolution of aerobic respiration and the acquisition of eukaryotic mitochondria from a proteobacterium ancestor, are supported by the analysis of the complete genome sequences.

[1]  H. Baltscheffsky Origin and evolution of biological energy conversion , 1996 .

[2]  C. Kurland Something for everyone , 2000, EMBO reports.

[3]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[4]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[5]  H. Maruyama,et al.  Functional , 2020, Congress of Neurological Surgeons Essent.

[6]  P. Bork,et al.  Variation and evolution of the citric-acid cycle: a genomic perspective. , 1999, Trends in microbiology.

[7]  K. Stetter,et al.  Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulphur flavoproteins. , 1994, Microbiology.

[8]  M. W. Gray,et al.  Evolution of organellar genomes. , 1999, Current opinion in genetics & development.

[9]  K. Towe Environmental oxygen conditions during the origin and early evolution of life , 1996 .

[10]  W. Doolittle,et al.  The nature of the universal ancestor and the evolution of the proteome. , 2000, Current opinion in structural biology.

[11]  J. Sakamoto,et al.  Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus. , 1999, Biochimica et biophysica acta.

[12]  W. Zumft,et al.  The Denitrifying Prokaryotes , 1992 .

[13]  C. Dahl,et al.  Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. , 1997, Microbiology.

[14]  Temple F. Smith,et al.  Reconstruction of ancient molecular phylogeny. , 1996, Molecular phylogenetics and evolution.

[15]  W. Doolittle,et al.  Lateral genomics. , 1999, Trends in cell biology.

[16]  D. Higgins,et al.  Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. , 1994, The EMBO journal.

[17]  N. Moran,et al.  Genes Lost and Genes Found: Evolution of Bacterial Pathogenesis and Symbiosis , 2001, Science.

[18]  B. Snel,et al.  Pathway alignment: application to the comparative analysis of glycolytic enzymes. , 1999, The Biochemical journal.

[19]  G. Olsen,et al.  A phylogenetic analysis of Aquifex pyrophilus. , 1992, Systematic and applied microbiology.

[20]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[21]  Sayaka,et al.  Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[22]  J R Yates,et al.  Analysis of the microbial proteome. , 2000, Current opinion in microbiology.

[23]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[24]  Nikos Kyrpides,et al.  Universal Protein Families and the Functional Content of the Last Universal Common Ancestor , 1999, Journal of Molecular Evolution.

[25]  M. Saraste,et al.  UvA-DARE ( Digital Academic Repository ) A second terminal oxidase in Sulfolobus acidocaldarius , 2004 .

[26]  M. Riley Systems for categorizing functions of gene products. , 1998, Current Opinion in Structural Biology.

[27]  M. Saraste,et al.  Evolution of energetic metabolism: the respiration-early hypothesis. , 1995, Trends in biochemical sciences.

[28]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Ronald W. Davis,et al.  Comparative genomes of Chlamydia pneumoniae and C. trachomatis , 1999, Nature Genetics.

[30]  Y. Nakamura,et al.  Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[31]  D. Lovley,et al.  Novel forms of anaerobic respiration of environmental relevance. , 2000, Current opinion in microbiology.

[32]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[33]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[34]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[35]  Douglas R. Smith,et al.  Methanogenesis: genes, genomes, and who's on first? , 1997, Journal of bacteriology.

[36]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[37]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[38]  B. Barrell,et al.  Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491 , 2000, Nature.

[39]  Benjamin L. King,et al.  Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori , 1999, Nature.

[40]  J A Eisen,et al.  Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? , 2001, Science.

[41]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[42]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[43]  Bland J. Finlay,et al.  Ecology and evolution in anoxic worlds , 1995 .

[44]  D. Hillis,et al.  Ribosomal DNA: Molecular Evolution and Phylogenetic Inference , 1991, The Quarterly Review of Biology.

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[47]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[48]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[49]  M. Brunori,et al.  The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: evolutionary implications. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  H Philippe,et al.  Where is the root of the universal tree of life? , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  F. Robb,et al.  Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. , 1998, DNA research : an international journal for rapid publication of reports on genes and genomes.

[52]  D. Richardson,et al.  Bacterial respiration: a flexible process for a changing environment. , 2000, Microbiology.

[53]  Michael Wagner,et al.  Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate Respiration , 1998, Journal of bacteriology.

[54]  G. Cannon,et al.  Carbon cycling: the prokaryotic contribution. , 2001, Current opinion in microbiology.

[55]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[56]  A. Driessen,et al.  Generation of proton-motive force by an archaeal terminal quinol oxidase from Sulfolobus acidocaldarius. , 1994, European journal of biochemistry.

[57]  N. Glansdorff,et al.  About the last common ancestor, the universal life‐tree and lateral gene transfer: a reappraisal , 2000, Molecular microbiology.

[58]  M. Hattori,et al.  Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA. , 2000, Nucleic acids research.

[59]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[60]  M. Syvanen Horizontal gene transfer: evidence and possible consequences. , 1994, Annual review of genetics.

[61]  G. Olsen,et al.  Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry? , 1999, Trends in genetics : TIG.

[62]  R F Doolittle,et al.  Evolution by acquisition: the case for horizontal gene transfers. , 1992, Trends in biochemical sciences.

[63]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[64]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[65]  S. Jünemann Cytochrome bd terminal oxidase. , 1997, Biochimica et biophysica acta.

[66]  V. Thorsson,et al.  Genome sequence of Halobacterium species NRC-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  B. Lang,et al.  Mitochondrial evolution. , 1999, Science.

[68]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[69]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[70]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[71]  C. Kurland,et al.  Origin and Evolution of the Mitochondrial Proteome , 2000, Microbiology and Molecular Biology Reviews.

[72]  Hervé Philippe,et al.  The Root of the Tree of Life in the Light of the Covarion Model , 1999, Journal of Molecular Evolution.

[73]  M. Kanehisa,et al.  Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. , 1998, Genome research.

[74]  Linda L. Blackall,et al.  Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes , 2001, Journal of bacteriology.

[75]  D Penny,et al.  The nature of the last universal common ancestor. , 1999, Current opinion in genetics & development.

[76]  B. Barrell,et al.  The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences , 2000, Nature.

[77]  G. Olsen,et al.  Ribosomal RNA: a key to phylogeny , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[78]  A. Driessen,et al.  Energy-transducing properties of primary proton pumps reconstituted into archaeal bipolar lipid vesicles. , 1993, European journal of biochemistry.

[79]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[80]  D. A. Palmieri,et al.  The genome sequence of the plant pathogen Xylella fastidiosa , 2000, Nature.

[81]  L. Holm,et al.  The happy family of cytochrome oxidases. , 1991, Biochemical Society transactions.

[82]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[83]  A. Rutherford,et al.  Photosynthetic reaction centres: variations on a common structural theme? , 1991, Trends in biochemical sciences.

[84]  T. Schäfer,et al.  Metabolism of hyperthermophiles , 1995, World journal of microbiology & biotechnology.

[85]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[86]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[87]  J. Adachi,et al.  MOLPHY version 2.3 : programs for molecular phylogenetics based on maximum likelihood , 1996 .

[88]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[89]  C. Rosenow,et al.  Monitoring gene expression using DNA microarrays. , 2000, Current opinion in microbiology.

[90]  P. Forterre,et al.  The nature of the last universal ancestor and the root of the tree of life, still open questions. , 1992, Bio Systems.

[91]  M W Gray,et al.  The endosymbiont hypothesis revisited. , 1992, International review of cytology.

[92]  W. Zumft Cell biology and molecular basis of denitrification. , 1997, Microbiology and molecular biology reviews : MMBR.

[93]  Y. Kawarabayasi,et al.  Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[94]  D. A. Russell,et al.  Functional, biochemical and genetic diversity of prokaryotic nitrate reductases , 2001, Cellular and Molecular Life Sciences CMLS.

[95]  Dmitrij Frishman,et al.  The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum , 2000, Nature.

[96]  S. Salzberg,et al.  Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. , 1999, Science.

[97]  C. Dahl,et al.  Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. , 1993, Journal of general microbiology.

[98]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[99]  H. Hennecke,et al.  Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[100]  C R Woese,et al.  Mitochondrial origins. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Robert Eugene Blankenship,et al.  The origin and evolution of oxygenic photosynthesis. , 1998, Trends in biochemical sciences.

[102]  S. Salzberg,et al.  Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. , 2000, Science.

[103]  B L Maidak,et al.  The RDP-II (Ribosomal Database Project) , 2001, Nucleic Acids Res..

[104]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology. , 1996, Journal of bacteriology.

[105]  B. Barquera,et al.  The superfamily of heme-copper respiratory oxidases , 1994, Journal of bacteriology.

[106]  W. Doolittle,et al.  Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[107]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[108]  B. May Complete nucleotide sequence of an avian isolate Pasteurella multocida , 2001 .

[109]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[110]  H Philippe,et al.  Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from archaea to bacteria. , 2000, Trends in genetics : TIG.

[111]  P. Forterre,et al.  The Rooting of the Universal Tree of Life Is Not Reliable , 1999, Journal of Molecular Evolution.

[112]  Y. Nakamura,et al.  Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. , 2000, Nucleic acids research.

[113]  C. Kurland,et al.  The Dual Origin of the Yeast Mitochondrial Proteome , 2000, Yeast.

[114]  R. Gennis,et al.  Sequence analysis of cytochrome bd oxidase suggests a revised topology for subunit I. , 1999, Biochimica et biophysica acta.

[115]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[116]  W. Purschke,et al.  Respiratory chains of archaea and extremophiles. , 1996, Biochimica et Biophysica Acta.

[117]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[118]  M. Riley,et al.  Functions of the gene products of Escherichia coli , 1993, Microbiological reviews.

[119]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[120]  Vivek Kapur,et al.  Complete genomic sequence of Pasteurella multocida,Pm70 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Jillian F. Banfield,et al.  Genomics and the Geosciences , 2000, Science.

[122]  Michael J. Stanhope,et al.  Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates , 2001, Nature.

[123]  M. Saraste,et al.  Cytochrome oxidase evolved by tinkering with denitrification enzymes , 1994, FEBS letters.

[124]  J. Oost,et al.  The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. , 1994, FEMS microbiology letters.

[125]  K. H. Wolfe Yesterday's polyploids and the mystery of diploidization , 2001, Nature Reviews Genetics.

[126]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[127]  Yves Van de Peer,et al.  The European Small Subunit Ribosomal RNA database , 2000, Nucleic Acids Res..

[128]  K Watanabe,et al.  Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[129]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[130]  R. Poole,et al.  Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. , 2000, Advances in microbial physiology.

[131]  R. Thauer Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. , 1998, Microbiology.

[132]  B F Lang,et al.  Mitochondrial evolution. , 1999, Science.

[133]  M. Saraste,et al.  Nitric oxide reductases in bacteria. , 2000, Biochimica et biophysica acta.

[134]  D. Moreira,et al.  Respiratory Chains in the Last Common Ancestor of Living Organisms , 1999, Journal of Molecular Evolution.

[135]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[136]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[137]  M. Saraste,et al.  Structural features of cytochrome oxidase , 1990, Quarterly Reviews of Biophysics.

[138]  M. Saraste,et al.  An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. , 1992, The EMBO journal.

[139]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[140]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[141]  S. M. Thomas,et al.  Microbial nitrogen cycles: physiology, genomics and applications. , 2001, Current opinion in microbiology.

[142]  A. Stams,et al.  Sugar metabolism of hyperthermophiles , 1996 .

[143]  E. Kojro,et al.  Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. , 1992, European journal of biochemistry.

[144]  M. Saraste,et al.  New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. , 1995, Journal of molecular biology.