Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair

[1]  S. Adar,et al.  The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II , 2020, Nature Communications.

[2]  D. Tollervey,et al.  Regulation of the RNAPII Pool Is Integral to the DNA Damage Response , 2020, Cell.

[3]  S. Adar,et al.  The sequential and cooperative action of CSB, CSA and UVSSA targets the TFIIH complex to DNA damage-stalled RNA polymerase II , 2019, bioRxiv.

[4]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[5]  W. Vermeulen,et al.  The transcription-coupled DNA repair-initiating protein CSB promotes XRCC1 recruitment to oxidative DNA damage , 2018, Nucleic acids research.

[6]  J. Svejstrup,et al.  The Cellular Response to Transcription-Blocking DNA Damage , 2018, Trends in biochemical sciences.

[7]  M. Kubota,et al.  Functional and clinical relevance of novel mutations in a large cohort of patients with Cockayne syndrome , 2018, Journal of Medical Genetics.

[8]  Mitsuru Higa,et al.  Inhibition of UVSSA ubiquitination suppresses transcription‐coupled nucleotide excision repair deficiency caused by dissociation from USP7 , 2018, The FEBS journal.

[9]  Adam D. Wier,et al.  Structural Basis for Eukaryotic Transcription-Coupled DNA Repair Initiation , 2017, Nature.

[10]  Y. Nishimura,et al.  Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways , 2017, Nucleic acids research.

[11]  L. S. Churchman,et al.  Pause & go: from the discovery of RNA polymerase pausing to its functional implications. , 2017, Current opinion in cell biology.

[12]  S. Arron,et al.  Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency , 2016, Proceedings of the National Academy of Sciences.

[13]  J. Joly,et al.  Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR , 2016, Genome Biology.

[14]  R. Tjian,et al.  Near-atomic resolution visualization of human transcription promoter opening , 2016, Nature.

[15]  Edward L. Huttlin,et al.  Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response. , 2015, Molecular cell.

[16]  Hidemasa Bono,et al.  CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites , 2014, Bioinform..

[17]  H. Ueda,et al.  A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents , 2014, Nature Protocols.

[18]  A. Stewart,et al.  Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease , 2014, Proceedings of the National Academy of Sciences.

[19]  J. Hoeijmakers,et al.  Understanding nucleotide excision repair and its roles in cancer and ageing , 2014, Nature Reviews Molecular Cell Biology.

[20]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[21]  T. E. Wilson,et al.  Use of Bru-Seq and BruChase-Seq for genome-wide assessment of the synthesis and stability of RNA. , 2014, Methods.

[22]  Eric Nestler,et al.  ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases , 2014, BMC Genomics.

[23]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[24]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[25]  German Tischler,et al.  biobambam: tools for read pair collation based algorithms on BAM files , 2013, Source Code for Biology and Medicine.

[26]  A. Utani,et al.  Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. , 2013, American journal of human genetics.

[27]  V. Laugel Cockayne syndrome: The expanding clinical and mutational spectrum , 2013, Mechanisms of Ageing and Development.

[28]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[29]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[30]  Junjie Chen,et al.  KIAA1530 Protein Is Recruited by Cockayne Syndrome Complementation Group Protein A (CSA) to Participate in Transcription-coupled Repair (TCR) , 2012, The Journal of Biological Chemistry.

[31]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[32]  Jeroen A. A. Demmers,et al.  UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair , 2012, Nature Genetics.

[33]  A. Yasui,et al.  Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair , 2012, Nature Genetics.

[34]  A. Utani,et al.  Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair , 2012, Nature Genetics.

[35]  S. Q. Xie,et al.  Polycomb Associates Genome-wide with a Specific RNA Polymerase II Variant, and Regulates Metabolic Genes in ESCs , 2012, Cell stem cell.

[36]  Yasuyuki Ohkawa,et al.  The classification of mRNA expression levels by the phosphorylation state of RNAPII CTD based on a combined genome-wide approach , 2011, BMC Genomics.

[37]  T. Nouspikel Multiple roles of ubiquitination in the control of nucleotide excision repair , 2011, Mechanisms of Ageing and Development.

[38]  K. J. Patel,et al.  Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice , 2011, Nature.

[39]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[40]  A. Lehmann,et al.  A semi-automated non-radioactive system for measuring recovery of RNA synthesis and unscheduled DNA synthesis using ethynyluracil derivatives. , 2010, DNA repair.

[41]  Christopher B. Burge,et al.  c-Myc Regulates Transcriptional Pause Release , 2010, Cell.

[42]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[43]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[44]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[45]  A. D’Andrea,et al.  Mouse models of Fanconi anemia. , 2009, Mutation research.

[46]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[47]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[48]  Heather Fawcett,et al.  A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU) , 2008, Nucleic acids research.

[49]  R. Conaway,et al.  Mammalian Elongin A complex mediates DNA‐damage‐induced ubiquitylation and degradation of Rpb1 , 2008, The EMBO journal.

[50]  P. Hanawalt,et al.  Transcription-coupled DNA repair: two decades of progress and surprises , 2008, Nature Reviews Molecular Cell Biology.

[51]  P. J. Brooks,et al.  The 8,5'-cyclopurine-2'-deoxynucleosides: candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. , 2008, DNA repair.

[52]  J. Armstrong,et al.  Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. , 2008, Gene.

[53]  J. Svejstrup,et al.  Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. , 2007, Molecular cell.

[54]  H. Erdjument-Bromage,et al.  Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD , 2007, Cell.

[55]  P. Cramer,et al.  CPD Damage Recognition by Transcribing RNA Polymerase II , 2007, Science.

[56]  E. Huang,et al.  Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice , 2007, Proceedings of the National Academy of Sciences.

[57]  J. Hoeijmakers,et al.  Impaired Genome Maintenance Suppresses the Growth Hormone–Insulin-Like Growth Factor 1 Axis in Mice with Cockayne Syndrome , 2006, PLoS biology.

[58]  A. Horwitz,et al.  BRCA1/BARD1 Ubiquitinate Phosphorylated RNA Polymerase II* , 2005, Journal of Biological Chemistry.

[59]  H. Erdjument-Bromage,et al.  Multiple Mechanisms Confining RNA Polymerase II Ubiquitylation to Polymerases Undergoing Transcriptional Arrest , 2005, Cell.

[60]  J. Manley,et al.  BRCA1/BARD1 inhibition of mRNA 3' processing involves targeted degradation of RNA polymerase II. , 2005, Genes & development.

[61]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  H. Erdjument-Bromage,et al.  A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage , 2002, Nature.

[63]  K. Sweder,et al.  Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for Cockayne's syndrome. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Vigneron,et al.  Mammalian cell lines expressing functional RNA polymerase II tagged with the green fluorescent protein. , 2000, Journal of cell science.

[65]  P. Philippsen,et al.  Heterologous modules for efficient and versatile PCR‐based gene targeting in Schizosaccharomyces pombe , 1998, Yeast.

[66]  J. Corden,et al.  Ultraviolet Radiation-induced Ubiquitination and Proteasomal Degradation of the Large Subunit of RNA Polymerase II , 1998, The Journal of Biological Chemistry.

[67]  F. Gruijl,et al.  Defective Transcription-Coupled Repair in Cockayne Syndrome B Mice Is Associated with Skin Cancer Predisposition , 1997, Cell.

[68]  R. Halaban,et al.  UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Ljungman,et al.  Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. , 1996, Oncogene.

[70]  C. McKerlie,et al.  Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia , 1996, Nature Genetics.

[71]  T. Ishikawa,et al.  High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene , 1995, Nature.

[72]  R. Wood,et al.  Mammalian DNA nucleotide excision repair reconstituted with purified protein components , 1995, Cell.

[73]  T. Sugano,et al.  U.v.-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. , 1994, Oncogene.

[74]  E. Friedberg,et al.  DNA Repair and Mutagenesis , 2006 .

[75]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[76]  S. Moreno,et al.  Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. , 1991, Methods in enzymology.