Mapping organelle proteins and protein complexes in Drosophila melanogaster.

Many proteins within eukaryotic cells are organized spatially and functionally into membrane bound organelles and complexes. A protein's location thus provides information about its function. Here, we apply LOPIT, a mass-spectrometry based technique that simultaneously maps proteins to specific subcellular compartments, to Drosophila embryos. We determine the subcellular distribution of hundreds of proteins, and protein complexes. Our results reveal the potential of LOPIT to provide average snapshots of cells.

[1]  M. Momoi,et al.  Genome organization of human 48-kDa oligosaccharyltransferase (DDOST). , 1997, Genomics.

[2]  C. Bessant,et al.  GAPP: a fully automated software for the confident identification of human peptides from tandem mass spectra. , 2006, Journal of proteome research.

[3]  M. Monti,et al.  Interaction Proteomics , 2005, Bioscience reports.

[4]  R. Mann,et al.  Boca, an Endoplasmic Reticulum Protein Required for Wingless Signaling and Trafficking of LDL Receptor Family Members in Drosophila , 2003, Cell.

[5]  Jimmy K. Eng,et al.  Systematic Characterization of Nuclear Proteome during Apoptosis , 2006, Molecular & Cellular Proteomics.

[6]  Joshua L. Heazlewood,et al.  SUBA: the Arabidopsis Subcellular Database , 2006, Nucleic Acids Res..

[7]  D. Kelleher,et al.  An evolving view of the eukaryotic oligosaccharyltransferase. , 2006, Glycobiology.

[8]  A. Craxton,et al.  Hepatic Ins(1,3,4,5)P4 3-phosphatase is compartmentalized inside endoplasmic reticulum. , 1993, The Journal of biological chemistry.

[9]  Robert E. Kearney,et al.  Quantitative Proteomics Analysis of the Secretory Pathway , 2006, Cell.

[10]  M. Mann,et al.  Proteomic characterization of the human centrosome by protein correlation profiling , 2003, Nature.

[11]  Bradford W. Gibson,et al.  Characterization of the human heart mitochondrial proteome , 2003, Nature Biotechnology.

[12]  Rod B. Watson,et al.  Localization of Organelle Proteins by Isotope Tagging (LOPIT)*S , 2004, Molecular & Cellular Proteomics.

[13]  Mingyao Liu,et al.  Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase , 2007, Nature.

[14]  I. Kiss,et al.  Down-Regulation of RpS21, a Putative Translation Initiation Factor Interacting with P40, Produces Viable Minute Imagos and Larval Lethality with Overgrown Hematopoietic Organs and Imaginal Discs , 1999, Molecular and Cellular Biology.

[15]  B. Bierer,et al.  Localization of the FK506-binding protein, FKBP 13, to the lumen of the endoplasmic reticulum. , 1993, The Biochemical journal.

[16]  M. Rossignol,et al.  Large‐scale characterization of integral proteins from Arabidopsis vacuolar membrane by two‐dimensional liquid chromatography , 2004, Proteomics.

[17]  C. Saccone,et al.  The MitoDrome database annotates and compares the OXPHOS nuclear genes of Drosophila melanogaster, Drosophila pseudoobscura and Anopheles gambiae. , 2006, Mitochondrion.

[18]  C. Bessant,et al.  i-Tracker: For quantitative proteomics using iTRAQ™ , 2005, BMC Genomics.

[19]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[20]  Kathryn S Lilley,et al.  Sub‐cellular localization of membrane proteins , 2008, Proteomics.

[21]  H. Chi,et al.  Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19. , 1999, Genomics.

[22]  Roger A Hoskins,et al.  The Carnegie Protein Trap Library: A Versatile Tool for Drosophila Developmental Studies , 2007, Genetics.

[23]  Madeline A. Crosby,et al.  FlyBase: genomes by the dozen , 2006, Nucleic Acids Res..

[24]  W. Merrick,et al.  Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes. , 1984, Archives of biochemistry and biophysics.

[25]  K. Tanaka,et al.  Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. , 2000, The Biochemical journal.

[26]  K. Tomer,et al.  Proteomics of immune-challenged Drosophila melanogaster larvae hemolymph. , 2005, Biochemical and biophysical research communications.

[27]  U. Theopold,et al.  Proteomics of the Drosophila immune response. , 2004, Trends in Biotechnology.

[28]  V. Agol,et al.  Molecular mechanisms of translation initiation in eukaryotes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[30]  I. Chang,et al.  Mass spectrometry‐based proteomic analysis of the epitope‐tag affinity purified protein complexes in eukaryotes , 2006, Proteomics.

[31]  Xiaohui S. Xie,et al.  A Mammalian Organelle Map by Protein Correlation Profiling , 2006, Cell.

[32]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[33]  N. Patel,et al.  Characterization and cloning of fasciclin III: A glycoprotein expressed on a subset of neurons and axon pathways in Drosophila , 1987, Cell.

[34]  Patrick G. A. Pedrioli,et al.  A high-quality catalog of the Drosophila melanogaster proteome , 2007, Nature Biotechnology.

[35]  J. Yates,et al.  Organellar proteomics reveals Golgi arginine dimethylation. , 2004, Molecular biology of the cell.

[36]  Jodi R Parrish,et al.  Yeast two-hybrid contributions to interactome mapping. , 2006, Current opinion in biotechnology.

[37]  E. Lundberg,et al.  Toward a Confocal Subcellular Atlas of the Human Proteome*S , 2008, Molecular & Cellular Proteomics.

[38]  C. Goodman,et al.  Drosophila substrate adhesion molecule: Sequence of laminin B1 chain reveals domains of homology with mouse , 1988, Cell.

[39]  G. Janssen,et al.  Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis. , 1988, The Journal of biological chemistry.

[40]  Jeroen Krijgsveld,et al.  Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics , 2003, Nature Biotechnology.

[41]  Proteomic analysis of the wing imaginal discs of Drosophila melanogaster , 2005, Proteomics.

[42]  S. Safrany,et al.  Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. , 1997, The Biochemical journal.

[43]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[44]  N. Perrimon,et al.  Functional genomics reveals genes involved in protein secretion and Golgi organization , 2006, Nature.

[45]  H. Pelham,et al.  The retention signal for soluble proteins of the endoplasmic reticulum. , 1990, Trends in biochemical sciences.

[46]  Rod B. Watson,et al.  Mapping the Arabidopsis organelle proteome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Peifer,et al.  Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. , 1994, Developmental biology.

[48]  Brian Raught,et al.  Advances in protein complex analysis using mass spectrometry , 2005, The Journal of physiology.

[49]  M. Jackson,et al.  Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. , 1990, The EMBO journal.