Mechanical sensitivity reveals evolutionary dynamics of mechanical systems

A classic question in evolutionary biology is how form–function relationships promote or limit diversification. Mechanical metrics, such as kinematic transmission (KT) in linkage systems, are useful tools for examining the evolution of form and function in a comparative context. The convergence of disparate systems on equivalent metric values (mechanical equivalence) has been highlighted as a source of potential morphological diversity under the assumption that morphology can evolve with minimal impact on function. However, this assumption does not account for mechanical sensitivity—the sensitivity of the metric to morphological changes in individual components of a structure. We examined the diversification of a four-bar linkage system in mantis shrimp (Stomatopoda), and found evidence for both mechanical equivalence and differential mechanical sensitivity. KT exhibited variable correlations with individual linkage components, highlighting the components that influence KT evolution, and the components that are free to evolve independently from KT and thereby contribute to the observed pattern of mechanical equivalence. Determining the mechanical sensitivity in a system leads to a deeper understanding of both functional convergence and morphological diversification. This study illustrates the importance of multi-level analyses in delineating the factors that limit and promote diversification in form–function systems.

[1]  P. Anderson Using linkage models to explore skull kinematic diversity and functional convergence in arthrodire placoderms , 2010, Journal of morphology.

[2]  M. Muller,et al.  Optimization principles applied to the mechanism of neurocranium levation and mouth bottom depression in bony fishes (Halecostomi). , 1987 .

[3]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[4]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[5]  G. Wilkinson,et al.  Effects of ornamentation and phylogeny on the evolution of wing shape in stalk‐eyed flies (Diopsidae) , 2013, Journal of evolutionary biology.

[6]  Nick Goldman,et al.  MAXIMUM LIKELIHOOD TREES FROM DNA SEQUENCES: A PECULIAR STATISTICAL ESTIMATION PROBLEM , 1995 .

[7]  Edward Stuart Russell,et al.  Form and Function , 2009 .

[8]  R. L. Young,et al.  FUNCTIONAL EQUIVALENCE OF MORPHOLOGIES ENABLES MORPHOLOGICAL AND ECOLOGICAL DIVERSITY , 2007, Evolution; international journal of organic evolution.

[9]  Adolf Seilacher,et al.  ARBEITSKONZEPT ZUR KONSTRUKTIONS‐MORPHOLOGIE , 1970 .

[10]  Michael E Alfaro,et al.  Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae , 2005, Proceedings of the Royal Society B: Biological Sciences.

[11]  G. C. Anker Morphology and kinetics of the head of the stickleback, Gasterosteus aculeatus , 2010 .

[12]  C. D. Hulsey,et al.  Hybridization produces novelty when the mapping of form to function is many to one , 2008, BMC Evolutionary Biology.

[13]  M. Westneat,et al.  Transmission of force and velocity in the feeding mechanisms of labrid fishes (Teleostei, Perciformes) , 1994, Zoomorphology.

[14]  M. M. Blanco,et al.  MUSCLE TRADE‐OFFS IN A POWER‐AMPLIFIED PREY CAPTURE SYSTEM , 2014, Evolution; international journal of organic evolution.

[15]  C Tristan Stayton,et al.  TESTING HYPOTHESES OF CONVERGENCE WITH MULTIVARIATE DATA: MORPHOLOGICAL AND FUNCTIONAL CONVERGENCE AMONG HERBIVOROUS LIZARDS , 2006, Evolution; international journal of organic evolution.

[16]  Michael E Alfaro,et al.  EVOLUTIONARY DYNAMICS OF COMPLEX BIOMECHANICAL SYSTEMS: AN EXAMPLE USING THE FOUR‐BAR MECHANISM , 2004, Evolution; international journal of organic evolution.

[17]  D. Bellwood,et al.  A Functional morphospace for the skull of labrid fishes: patterns of diversity in a complex biomechanical system , 2004 .

[18]  Thomas Claverie,et al.  MODULARITY AND RATES OF EVOLUTIONARY CHANGE IN A POWER‐AMPLIFIED PREY CAPTURE SYSTEM , 2013, Evolution; international journal of organic evolution.

[19]  M. A. R. Koehl,et al.  WHEN DOES MORPHOLOGY MATTER , 1996 .

[20]  C. Barel Concepts of an architectonic approach to transformation morphology , 1993 .

[21]  Michael V. Rosario,et al.  From bouncy legs to poisoned arrows: elastic movements in invertebrates , 2011, Journal of Experimental Biology.

[22]  P. Wainwright Functional Versus Morphological Diversity in Macroevolution , 2007 .

[23]  R. Caldwell,et al.  Biomechanics: Deadly strike mechanism of a mantis shrimp , 2004, Nature.

[24]  D. Collar,et al.  DISCORDANCE BETWEEN MORPHOLOGICAL AND MECHANICAL DIVERSITY IN THE FEEDING MECHANISM OF CENTRARCHID FISHES , 2006, Evolution; international journal of organic evolution.

[25]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[26]  S N Patek,et al.  Elastic energy storage in the mantis shrimp's fast predatory strike , 2009, Journal of Experimental Biology.

[27]  S N Patek,et al.  Linkage mechanics and power amplification of the mantis shrimp's strike , 2007, Journal of Experimental Biology.

[28]  C. Klingenberg MorphoJ: an integrated software package for geometric morphometrics , 2011, Molecular ecology resources.

[29]  C. D. Hulsey,et al.  Projecting mechanics into morphospace: disparity in the feeding system of labrid fishes , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  Michael V. Rosario,et al.  Comparative spring mechanics in mantis shrimp , 2013, Journal of Experimental Biology.

[31]  Michael E Alfaro,et al.  Evolutionary Consequences of Many‐to‐One Mapping of Jaw Morphology to Mechanics in Labrid Fishes , 2005, The American Naturalist.

[32]  S M Cox,et al.  A physical model of the extreme mantis shrimp strike: kinematics and cavitation of Ninjabot , 2014, Bioinspiration & biomimetics.

[33]  T. Cronin,et al.  Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans , 2010, Journal of Experimental Biology.

[34]  S. Jarman,et al.  Stomatopod Interrelationships: Preliminary Results Based on Analysis of three Molecular Loci , 2009, Arthropod Systematics & Phylogeny.

[35]  R. L. Young,et al.  Morphological diversity and ecological similarity: versatility of muscular and skeletal morphologies enables ecological convergence in shrews , 2010 .

[36]  S. Patek,et al.  LEVERS AND LINKAGES: MECHANICAL TRADE‐OFFS IN A POWER‐AMPLIFIED SYSTEM , 2014, Evolution; international journal of organic evolution.

[37]  P. Anderson,et al.  Biomechanics, functional patterns, and disparity in Late Devonian arthrodires , 2009, Paleobiology.

[38]  H. David Sheets,et al.  Geometric morphometrics for biologists : a primer , 2004 .

[39]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[40]  G. Vermeij Adaptation, Versatility, and Evolution , 1973 .

[41]  A. Herrel,et al.  THE QUICK AND THE FAST: THE EVOLUTION OF ACCELERATION CAPACITY IN ANOLIS LIZARDS , 2006, Evolution; international journal of organic evolution.

[42]  M. Westneat,et al.  Feeding mechanics of teleost fishes (Labridae; Perciformes): A test of four‐bar linkage models , 1990, Journal of morphology.

[43]  Joe C. Campbell,et al.  Developmental Constraints and Evolution: A Perspective from the Mountain Lake Conference on Development and Evolution , 1985, The Quarterly Review of Biology.

[44]  G. Cuvier Tableau élémentaire de l'histoire naturelle des animaux , 2016 .

[45]  George V. Lauder,et al.  Form and function: structural analysis in evolutionary morphology , 1981, Paleobiology.

[46]  Graham K. Taylor,et al.  Evolutionary biomechanics : selection, phylogeny, and constraint , 2014 .

[47]  S. Ahyong Revision of the Australian Stomatopod Crustacea , 2001 .

[48]  F. Rohlf,et al.  tpsDig, version 2.10 , 2006 .