Quantum error-correction using codes with low-density generator matrix

We propose the use of linear codes with low-density generator matrix in the context of quantum error correction. The proposed codes allow greater flexibility and are easier to design than existing sparse-graph quantum codes, while leading to better performance.

[1]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[2]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Wei Zhong,et al.  Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix , 2003, IEEE Communications Letters.

[4]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[5]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[7]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[8]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  J. Garcia-Frias,et al.  Iterative decoding schemes for source and joint source-channel coding of correlated sources , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[10]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[11]  Wei Zhong,et al.  Approaching the shannon limit through parallel concatenation of regular LDGM codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[12]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[13]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[14]  S. ten Brink,et al.  Code doping for triggering iterative decoding convergence , 2001 .

[15]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.