Application of Discrete Recursive Bayesian Estimation on Intervals and the Unit Circle to Filtering on SE(2)

Many applications require state estimation where possible values of the state are constrained to an interval (say, the valve position in percent) or the unit circle (say, the direction a robot is facing). We present two approaches that rely on a discretization of the state space, which differ in their interpretation of the discretized density. The first option is a piecewise constant density and the second option is a Dirac-mixture density. We show how circular filters can be derived and discuss the advantages and disadvantages of both approaches. In addition, we show how to extend the Dirac-based approach to estimation on the special Euclidean group in 2D, the group of rigid body motions in the plane, using Rao–Blackwellization. All presented the methods are thoroughly evaluated in simulations.

[1]  Harold W. Sorenson,et al.  Recursive Bayesian estimation using piece-wise constant approximations , 1988, Autom..

[2]  Paris Smaragdis,et al.  A Wrapped Kalman Filter for Azimuthal Speaker Tracking , 2013, IEEE Signal Processing Letters.

[3]  Gerhard Kurz,et al.  The partially wrapped normal distribution for SE(2) estimation , 2014, 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI).

[4]  Václav Smídl,et al.  Rao-Blackwellized point mass filter for reliable state estimation , 2013, Proceedings of the 16th International Conference on Information Fusion.

[5]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[6]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[7]  Fredrik Gustafsson,et al.  Vehicle speed tracking using chassis vibrations , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[8]  W. Wonham Some applications of stochastic difierential equations to optimal nonlinear ltering , 1964 .

[9]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[10]  Igor Gilitschenski,et al.  Deterministic Sampling for Nonlinear Dynamic State Estimation , 2016 .

[11]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[12]  Sandra Hirche,et al.  Rigid motion estimation using mixtures of projected Gaussians , 2013, Proceedings of the 16th International Conference on Information Fusion.

[13]  Ana Martins,et al.  Comparing wind generation profiles: A circular data approach , 2015, 2015 12th International Conference on the European Energy Market (EEM).

[14]  Gerhard Kurz,et al.  Non-identity measurement models for orientation estimation based on directional statistics , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[15]  Gerhard Kurz,et al.  Multimodal circular filtering using Fourier series , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[16]  Mahmoud El-Gohary,et al.  Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm , 2015, IEEE Transactions on Biomedical Engineering.

[17]  Dimitri P. Bertsekas,et al.  Discretized Approximations for POMDP with Average Cost , 2004, UAI.

[18]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[19]  Gerhard Kurz,et al.  Recursive Bayesian filtering in circular state spaces , 2015, IEEE Aerospace and Electronic Systems Magazine.

[20]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[21]  Gerhard Kurz,et al.  Discrete recursive Bayesian filtering on intervals and the unit circle , 2016, 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).

[22]  Gerhard Kurz,et al.  A stochastic filter for planar rigid-body motions , 2015, 2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).

[23]  Ivan Markovic,et al.  On wrapping the Kalman filter and estimating with the SO(2) group , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[24]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[25]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[26]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[27]  R. Bucy,et al.  Digital synthesis of non-linear filters , 1971 .

[28]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[29]  L. Shampine Vectorized adaptive quadrature in MATLAB , 2008 .

[30]  Michael R. M. Jenkin,et al.  Computational principles of mobile robotics , 2000 .

[31]  S. Reboul,et al.  Circular data processing tools applied to a Phase Open Loop architecture for multi-channels signals tracking , 2012, Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium.

[32]  Gerhard Kurz,et al.  Nonlinear prediction for circular filtering using Fourier series , 2016, 2016 19th International Conference on Information Fusion (FUSION).