Optm3sec: Optimizing Multicast Irs-Aided Multiantenna Dfrc Secrecy Channel With Multiple Eavesdroppers

With the use of common signaling methods for dual-function radarcommunications (DFRC) systems, the susceptibility of eavesdropping on messages aimed at legitimate users has worsened. For DFRC systems, the radar target may act as an eavesdropper (ED) that receives a high-energy signal thereby leading to additional challenges. Unlike prior works, we consider a multicast multi-antenna DFRC system with multiple EDs. We then propose a physical layer design approach to maximize the secrecy rate by installing intelligent reflecting surfaces in the radar channels. Our optimization of multiple ED multicast multi-antenna DFRC secrecy rate (OptM3Sec) approach solves this highly nonconvex problem with respect to the precoding matrices. Our numerical experiments demonstrate the feasibility of our algorithm in maximizing the secrecy rate in this DFRC setup.

[1]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[2]  A. Lee Swindlehurst,et al.  Solutions for the MIMO Gaussian Wiretap Channel With a Cooperative Jammer , 2011, IEEE Transactions on Signal Processing.

[3]  Stéphane Y. Le Goff,et al.  Secrecy Rate Optimizations for a MIMO Secrecy Channel With a Cooperative Jammer , 2015, IEEE Transactions on Vehicular Technology.

[4]  Zhu Han,et al.  Improving Wireless Physical Layer Security via Cooperating Relays , 2010, IEEE Transactions on Signal Processing.

[5]  Bjorn Ottersten,et al.  Toward Millimeter-Wave Joint Radar Communications: A signal processing perspective , 2019, IEEE Signal Processing Magazine.

[6]  Stephan Sigg,et al.  Secure Communication Based on Ambient Audio , 2013, IEEE Transactions on Mobile Computing.

[7]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[8]  Shannon D. Blunt,et al.  Radar Spectrum Engineering and Management: Technical and Regulatory Issues , 2015, Proceedings of the IEEE.

[9]  Moeness G. Amin,et al.  Performance Tradeoff in a Unified System of Communications and Passive Radar: A Secrecy Capacity Approach , 2018, Digit. Signal Process..

[10]  K. Mishra,et al.  A Survey of Deep Learning Architectures for Intelligent Reflecting Surfaces , 2020, ArXiv.

[11]  Rohit Negi,et al.  Guaranteeing Secrecy using Artificial Noise , 2008, IEEE Transactions on Wireless Communications.

[12]  Yaming Wang,et al.  Secure Beamforming for MIMO Broadcasting With Wireless Information and Power Transfer , 2014, IEEE Transactions on Wireless Communications.

[13]  A. Zaghloul,et al.  Intelligent Time-Varying Metasurface Transceiver for Index Modulation in 6G Wireless Networks , 2020, IEEE Antennas and Wireless Propagation Letters.

[14]  Benjamin Friedlander,et al.  On Transmit Beamforming for MIMO Radar , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[15]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[16]  Wan Choi,et al.  Multiuser Diversity for Secrecy Communications Using Opportunistic Jammer Selection: Secure DoF and Jammer Scaling Law , 2014, IEEE Transactions on Signal Processing.

[17]  Yimin Zhang,et al.  Dual-Function Radar-Communications: Information Embedding Using Sidelobe Control and Waveform Diversity , 2016, IEEE Transactions on Signal Processing.

[18]  Haji M. Furqan,et al.  Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey , 2019, IEEE Communications Surveys & Tutorials.

[19]  Christos Masouros,et al.  Secure Radar-Communication Systems With Malicious Targets: Integrating Radar, Communications and Jamming Functionalities , 2019, IEEE Transactions on Wireless Communications.

[20]  Sangarapillai Lambotharan,et al.  Secrecy Rate Optimizations for MIMO Communication Radar , 2018, IEEE Transactions on Aerospace and Electronic Systems.

[21]  Kumar Vijay Mishra,et al.  IRS-Aided Radar: Enhanced Target Parameter Estimation via Intelligent Reflecting Surfaces , 2021 .

[22]  Kai-Kit Wong,et al.  Optimal Cooperative Jamming to Enhance Physical Layer Security Using Relays , 2011, IEEE Transactions on Signal Processing.

[23]  Steven P. Weber,et al.  On Cooperative Relaying Schemes for Wireless Physical Layer Security , 2010, IEEE Transactions on Signal Processing.

[24]  Björn E. Ottersten,et al.  Improving Physical Layer Secrecy Using Full-Duplex Jamming Receivers , 2013, IEEE Transactions on Signal Processing.

[25]  Athina P. Petropulu,et al.  Uncoordinated Cooperative Jamming for Secret Communications , 2013, IEEE Transactions on Information Forensics and Security.

[26]  Aditya K. Jagannatham,et al.  Joint Transmit and Reflective Beamformer Design for Secure Estimation in IRS-Aided WSNs , 2022, IEEE Signal Processing Letters.

[27]  Carles Padró,et al.  Information Theoretic Security , 2013, Lecture Notes in Computer Science.

[28]  Zhi Chen,et al.  On Secrecy Capacity of Gaussian Wiretap Channel Aided by A Cooperative Jammer , 2014, IEEE Signal Processing Letters.

[29]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[30]  Tareq Y. Al-Naffouri,et al.  Enhancing Secrecy With Multiantenna Transmission in Millimeter Wave Vehicular Communication Systems , 2016, IEEE Transactions on Vehicular Technology.