Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens
暂无分享,去创建一个
J. Kneib | M. Nonino | J. Hjorth | L. Christensen | J. Diego | T. Broadhurst | O. Graur | S. Rodney | P. Rosati | A. Zitrin | S. Jha | C. McCully | T. Treu | R. Foley | D. Howell | T. Matheson | N. Smith | G. Brammer | L. Pueyo | M. Oguri | J. Richard | M. Bradač | B. Frye | M. Jauzac | C. Norman | P. Kelly | C. Grillo | N. Kaiser | J. Selsing | K. Sharon | A. Cava | P. Pérez-González | S. D. de Mink | R. Kawamata | K. Schmidt | G. Brammer | W. Zheng | T. Morishita | A. Riess | Xin Wang | A. Benito | I. Pérez-Fournon | S. Cenko | Timothy W. Ross | B. Weiner | A. Filippenko | Timothy Ross
[1] J. Diego,et al. Dark Matter under the Microscope: Constraining Compact Dark Matter with Caustic Crossing Events , 2017, 1706.10281.
[2] C. Conroy,et al. The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. IV. A Super-Salpeter IMF in the Center of NGC 1407 from Non-parametric Models , 2016, 1612.00013.
[3] C. Conroy,et al. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints , 2016, 1612.00065.
[4] C. Conroy,et al. The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. III. Radial Gradients , 2016, 1611.09859.
[5] H. Alpert,et al. Stellar populations of BCGs, close companions and intracluster light in Abell 85, Abell 2457 and IIZw108 , 2016, 1606.00967.
[6] J. Anderson,et al. The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.
[7] A. Riess,et al. Did LIGO Detect Dark Matter? , 2016, Physical review letters.
[8] B. Weiner,et al. SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA , 2015, 1512.09093.
[9] B. Weiner,et al. SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA , 2015, 1512.05734.
[10] M. Nonino,et al. DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL , 2015, 1512.04654.
[11] M. Lombardi,et al. THE STORY OF SUPERNOVA “REFSDAL” TOLD BY MUSE , 2015, 1511.04093.
[12] M. Meneghetti,et al. THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS , 2015, 1511.04002.
[13] M. Oguri,et al. PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.
[14] J. Diego,et al. “REFSDAL” MEETS POPPER: COMPARING PREDICTIONS OF THE RE-APPEARANCE OF THE MULTIPLY IMAGED SUPERNOVA BEHIND MACSJ1149.5+2223 , 2015, 1510.05750.
[15] R. Massey,et al. Hubble Frontier Fields: predictions for the return of SN Refsdal with the MUSE and GMOS spectrographs , 2015, 1509.08914.
[16] J. Prochaska,et al. A highly-ionized region surrounding SN Refsdal revealed by MUSE , 2015, 1509.07515.
[17] A. Fontana,et al. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE , 2015, 1509.00475.
[18] M. Meneghetti,et al. ILLUMINATING A DARK LENS: A TYPE Ia SUPERNOVA MAGNIFIED BY THE FRONTIER FIELDS GALAXY CLUSTER ABELL 2744 , 2015, 1505.06211.
[19] Alessandro Bressan,et al. The mass spectrum of compact remnants from the parsec stellar evolution tracks , 2015, 1505.05201.
[20] J. Diego,et al. A free-form prediction for the reappearance of supernova Refsdal in the Hubble Frontier Fields cluster MACSJ1149.5+2223 , 2015, 1504.05953.
[21] K. Sharon,et al. REVISED LENS MODEL FOR THE MULTIPLY IMAGED LENSED SUPERNOVA, “SN REFSDAL” IN MACS J1149+2223 , 2014, 1411.6933.
[22] M. Oguri. Predicted properties of multiple images of the strongly lensed supernova SN Refsdal. , 2014, 1411.6443.
[23] A. Fontana,et al. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.
[24] C. Kochanek,et al. The search for failed supernovae with the Large Binocular Telescope: first candidates , 2014, 1411.1761.
[25] M. Meneghetti,et al. HUBBLE SPACE TELESCOPE COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES , 2014, 1411.1414.
[26] T. Thompson,et al. THE LANDSCAPE OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE: NEUTRON STAR AND BLACK HOLE MASS FUNCTIONS, EXPLOSION ENERGIES, AND NICKEL YIELDS , 2014, 1409.0540.
[27] N. Smith. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.
[28] A. Fontana,et al. THROUGH THE LOOKING GLASS: HST SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745 , 2014, 1401.0532.
[29] S. B. Cenko,et al. TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE , 2013, 1310.3495.
[30] L. Koopmans,et al. A low-mass cut-off near the hydrogen burning limit for Salpeter-like initial mass functions in early-type galaxies , 2013, 1306.2635.
[31] Harvard-Smithsonian CfA,et al. Stellar Multiplicity , 2013, 1303.3028.
[32] Ilian T. Iliev,et al. The halo mass function through the cosmic ages , 2012, 1212.0095.
[33] P. Hudelot,et al. Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses , 2012, 1211.4029.
[34] C. Evans,et al. Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.
[35] Pieter van Dokkum,et al. THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS , 2012, 1205.6473.
[36] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[37] R. Davies,et al. Systematic variation of the stellar initial mass function in early-type galaxies , 2012, Nature.
[38] D. Thompson,et al. DISENTANGLING BARYONS AND DARK MATTER IN THE SPIRAL GRAVITATIONAL LENS B1933+503 , 2011, 1110.2536.
[39] D. Holz,et al. COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.
[40] O. Lahav,et al. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.
[41] L. Kewley,et al. METALLICITY GRADIENT OF A LENSED FACE-ON SPIRAL GALAXY AT REDSHIFT 1.49 , 2011, 1103.3277.
[42] Pieter G. van Dokkum,et al. A substantial population of low-mass stars in luminous elliptical galaxies , 2010, Nature.
[43] S. Suyu,et al. The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544−0121 , 2010, 1007.4815.
[44] A. Bolton,et al. DARK MATTER CONTRACTION AND THE STELLAR CONTENT OF MASSIVE EARLY-TYPE GALAXIES: DISFAVORING “LIGHT” INITIAL MASS FUNCTIONS , 2010, 1007.2409.
[45] C. Keeton. On modeling galaxy-scale strong lens systems , 2010 .
[46] E. Ofek,et al. THE TYPE Ia SUPERNOVA RATE IN REDSHIFT 0.5–0.9 GALAXY CLUSTERS , 2010, 1006.3757.
[47] M. Oguri. The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.
[48] C. Jeffery,et al. Stellar winds and mass loss from extreme helium stars , 2010, 1001.4399.
[49] J. Gunn,et al. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.
[50] T. Treu,et al. The initial mass function of early-type galaxies , 2009, 0911.3392.
[51] A. M. Swinbank,et al. HUBBLE SPACE TELESCOPE OBSERVATIONS OF A SPECTACULAR NEW STRONG-LENSING GALAXY CLUSTER: MACS J1149.5+2223 AT z = 0.544 , 2009, 0911.2003.
[52] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[53] T. Broadhurst,et al. DISCOVERY OF THE LARGEST KNOWN LENSED IMAGES FORMED BY A CRITICALLY CONVERGENT LENSING CLUSTER , 2009, 0906.5079.
[54] Chris L. Fryer,et al. ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.
[55] D. Coe,et al. New Multiply-Lensed Galaxies Identified in ACS/NIC3 Observations of Cl0024+1654, Using an Improved Mass Model , 2009, 0902.3971.
[56] Copenhagen,et al. The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.
[57] Belgium,et al. Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.
[58] J. Kneib,et al. A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.
[59] A. Edge,et al. A Complete Sample of 12 Very X-Ray Luminous Galaxy Clusters at z > 0.5 , 2007, astro-ph/0703394.
[60] -INAF,et al. Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.
[61] A. Zezas,et al. Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.
[62] R. Kurucz,et al. New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.
[63] Gilles Chabrier,et al. The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.
[64] France,et al. Brown dwarfs in the Pleiades cluster: Clues to the substellar mass function , , 2002, astro-ph/0212571.
[65] B. Gaudi,et al. Gravitational Microlensing near Caustics. I. Folds , 2001, astro-ph/0112531.
[66] P. Kroupa. On the variation of the initial mass function , 2000, astro-ph/0009005.
[67] Andrew E. Dolphin,et al. WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.
[68] L. Koesterke,et al. SPECTRUM FORMATION IN CLUMPED STELLAR WINDS : CONSEQUENCES FOR THE ANALYSES OF WOLF-RAYET SPECTRA , 1998 .
[69] B. Gibson,et al. A Hubble Space Telescope Study of Extragalactic OB Associations , 1998 .
[70] A. Renzini,et al. Transverse dissections of the fundamental planes of elliptical galaxies and clusters of galaxies , 1993 .
[71] J. Miralda-Escudé. The magnification of stars crossing a caustic. I - Lenses with smooth potentials , 1991 .
[72] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[73] S. Rodney,et al. PythonPhot: Simple DAOPHOT-type photometry in Python , 2015 .
[74] S. Woosley,et al. EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.
[75] J. Dachs. PHOTOMETRY OF BRIGHT STARS IN THE SMALL MAGELLANIC CLOUD. , 1970 .
[76] J. Gunn,et al. THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .