Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens

[1]  J. Diego,et al.  Dark Matter under the Microscope: Constraining Compact Dark Matter with Caustic Crossing Events , 2017, 1706.10281.

[2]  C. Conroy,et al.  The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. IV. A Super-Salpeter IMF in the Center of NGC 1407 from Non-parametric Models , 2016, 1612.00013.

[3]  C. Conroy,et al.  The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints , 2016, 1612.00065.

[4]  C. Conroy,et al.  The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. III. Radial Gradients , 2016, 1611.09859.

[5]  H. Alpert,et al.  Stellar populations of BCGs, close companions and intracluster light in Abell 85, Abell 2457 and IIZw108 , 2016, 1606.00967.

[6]  J. Anderson,et al.  The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.

[7]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[8]  B. Weiner,et al.  SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA , 2015, 1512.09093.

[9]  B. Weiner,et al.  SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA , 2015, 1512.05734.

[10]  M. Nonino,et al.  DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL , 2015, 1512.04654.

[11]  M. Lombardi,et al.  THE STORY OF SUPERNOVA “REFSDAL” TOLD BY MUSE , 2015, 1511.04093.

[12]  M. Meneghetti,et al.  THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS , 2015, 1511.04002.

[13]  M. Oguri,et al.  PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.

[14]  J. Diego,et al.  “REFSDAL” MEETS POPPER: COMPARING PREDICTIONS OF THE RE-APPEARANCE OF THE MULTIPLY IMAGED SUPERNOVA BEHIND MACSJ1149.5+2223 , 2015, 1510.05750.

[15]  R. Massey,et al.  Hubble Frontier Fields: predictions for the return of SN Refsdal with the MUSE and GMOS spectrographs , 2015, 1509.08914.

[16]  J. Prochaska,et al.  A highly-ionized region surrounding SN Refsdal revealed by MUSE , 2015, 1509.07515.

[17]  A. Fontana,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE , 2015, 1509.00475.

[18]  M. Meneghetti,et al.  ILLUMINATING A DARK LENS: A TYPE Ia SUPERNOVA MAGNIFIED BY THE FRONTIER FIELDS GALAXY CLUSTER ABELL 2744 , 2015, 1505.06211.

[19]  Alessandro Bressan,et al.  The mass spectrum of compact remnants from the parsec stellar evolution tracks , 2015, 1505.05201.

[20]  J. Diego,et al.  A free-form prediction for the reappearance of supernova Refsdal in the Hubble Frontier Fields cluster MACSJ1149.5+2223 , 2015, 1504.05953.

[21]  K. Sharon,et al.  REVISED LENS MODEL FOR THE MULTIPLY IMAGED LENSED SUPERNOVA, “SN REFSDAL” IN MACS J1149+2223 , 2014, 1411.6933.

[22]  M. Oguri Predicted properties of multiple images of the strongly lensed supernova SN Refsdal. , 2014, 1411.6443.

[23]  A. Fontana,et al.  Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.

[24]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: first candidates , 2014, 1411.1761.

[25]  M. Meneghetti,et al.  HUBBLE SPACE TELESCOPE COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES , 2014, 1411.1414.

[26]  T. Thompson,et al.  THE LANDSCAPE OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE: NEUTRON STAR AND BLACK HOLE MASS FUNCTIONS, EXPLOSION ENERGIES, AND NICKEL YIELDS , 2014, 1409.0540.

[27]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[28]  A. Fontana,et al.  THROUGH THE LOOKING GLASS: HST SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745 , 2014, 1401.0532.

[29]  S. B. Cenko,et al.  TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE , 2013, 1310.3495.

[30]  L. Koopmans,et al.  A low-mass cut-off near the hydrogen burning limit for Salpeter-like initial mass functions in early-type galaxies , 2013, 1306.2635.

[31]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[32]  Ilian T. Iliev,et al.  The halo mass function through the cosmic ages , 2012, 1212.0095.

[33]  P. Hudelot,et al.  Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses , 2012, 1211.4029.

[34]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[35]  Pieter van Dokkum,et al.  THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS , 2012, 1205.6473.

[36]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[37]  R. Davies,et al.  Systematic variation of the stellar initial mass function in early-type galaxies , 2012, Nature.

[38]  D. Thompson,et al.  DISENTANGLING BARYONS AND DARK MATTER IN THE SPIRAL GRAVITATIONAL LENS B1933+503 , 2011, 1110.2536.

[39]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[40]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[41]  L. Kewley,et al.  METALLICITY GRADIENT OF A LENSED FACE-ON SPIRAL GALAXY AT REDSHIFT 1.49 , 2011, 1103.3277.

[42]  Pieter G. van Dokkum,et al.  A substantial population of low-mass stars in luminous elliptical galaxies , 2010, Nature.

[43]  S. Suyu,et al.  The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544−0121 , 2010, 1007.4815.

[44]  A. Bolton,et al.  DARK MATTER CONTRACTION AND THE STELLAR CONTENT OF MASSIVE EARLY-TYPE GALAXIES: DISFAVORING “LIGHT” INITIAL MASS FUNCTIONS , 2010, 1007.2409.

[45]  C. Keeton On modeling galaxy-scale strong lens systems , 2010 .

[46]  E. Ofek,et al.  THE TYPE Ia SUPERNOVA RATE IN REDSHIFT 0.5–0.9 GALAXY CLUSTERS , 2010, 1006.3757.

[47]  M. Oguri The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.

[48]  C. Jeffery,et al.  Stellar winds and mass loss from extreme helium stars , 2010, 1001.4399.

[49]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.

[50]  T. Treu,et al.  The initial mass function of early-type galaxies , 2009, 0911.3392.

[51]  A. M. Swinbank,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF A SPECTACULAR NEW STRONG-LENSING GALAXY CLUSTER: MACS J1149.5+2223 AT z = 0.544 , 2009, 0911.2003.

[52]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[53]  T. Broadhurst,et al.  DISCOVERY OF THE LARGEST KNOWN LENSED IMAGES FORMED BY A CRITICALLY CONVERGENT LENSING CLUSTER , 2009, 0906.5079.

[54]  Chris L. Fryer,et al.  ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.

[55]  D. Coe,et al.  New Multiply-Lensed Galaxies Identified in ACS/NIC3 Observations of Cl0024+1654, Using an Improved Mass Model , 2009, 0902.3971.

[56]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.

[57]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[58]  J. Kneib,et al.  A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.

[59]  A. Edge,et al.  A Complete Sample of 12 Very X-Ray Luminous Galaxy Clusters at z > 0.5 , 2007, astro-ph/0703394.

[60]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[61]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[62]  R. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[63]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[64]  France,et al.  Brown dwarfs in the Pleiades cluster: Clues to the substellar mass function , , 2002, astro-ph/0212571.

[65]  B. Gaudi,et al.  Gravitational Microlensing near Caustics. I. Folds , 2001, astro-ph/0112531.

[66]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[67]  Andrew E. Dolphin,et al.  WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.

[68]  L. Koesterke,et al.  SPECTRUM FORMATION IN CLUMPED STELLAR WINDS : CONSEQUENCES FOR THE ANALYSES OF WOLF-RAYET SPECTRA , 1998 .

[69]  B. Gibson,et al.  A Hubble Space Telescope Study of Extragalactic OB Associations , 1998 .

[70]  A. Renzini,et al.  Transverse dissections of the fundamental planes of elliptical galaxies and clusters of galaxies , 1993 .

[71]  J. Miralda-Escudé The magnification of stars crossing a caustic. I - Lenses with smooth potentials , 1991 .

[72]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[73]  S. Rodney,et al.  PythonPhot: Simple DAOPHOT-type photometry in Python , 2015 .

[74]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[75]  J. Dachs PHOTOMETRY OF BRIGHT STARS IN THE SMALL MAGELLANIC CLOUD. , 1970 .

[76]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .