Hot-electron bolometer terahertz mixers for the Herschel Space Observatory.

We report on low noise terahertz mixers (1.4-1.9 THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5 to 2.5 THz, with 30 GHz resolution) and also by measuring the mixer noise temperature at a limited number of discrete frequencies. The lowest mixer noise temperature recorded was 750 K [double sideband (DSB)] at 1.6 THz and 950 K DSB at 1.9 THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4-4.8 GHz, the mixer noise temperature was 1100 K DSB at 1.6 THz and 1450 K DSB at 1.9 THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200-500 nW range.

[1]  R. Cristiano,et al.  The characteristic electron–phonon coupling time of unconventional superconductors and implications for optical detectors , 2005 .

[2]  Sigfrid Yngvesson,et al.  Gain and noise bandwidth of NbN hot-electron bolometric mixers , 1997 .

[3]  Goutam Chattopadhyay,et al.  Noise Stability of SIS Receivers , 2000 .

[4]  I. Mehdi,et al.  Local oscillator chain for 1.55 to 1.75THz with 100-/spl mu/W peak power , 2005, IEEE Microwave and Wireless Components Letters.

[5]  Jonas Zmuidzinas,et al.  Superconducting detectors and mixers for millimeter and submillimeter astrophysics , 2004, Proceedings of the IEEE.

[6]  Semenov,et al.  Analysis of the nonequilibrium photoresponse of superconducting films to pulsed radiation by use of a two-temperature model. , 1995, Physical review. B, Condensed matter.

[7]  D. Schaubert,et al.  Dipole and slot elements and arrays on semi-infinite substrates , 1985 .

[8]  T. Tils,et al.  THz Waveguide Mixers With NbTiN HEBs on Silicon Nitride Membranes , 2006, IEEE Microwave and Wireless Components Letters.

[9]  J. Zmuidzinas,et al.  Low Noise 1 THz–1.4 THz Mixers Using Nb/Al-AlN/NbTiN SIS Junctions , 2007, IEEE Transactions on Applied Superconductivity.

[10]  V. P. Koshelets,et al.  Superconducting integrated receiver development for TELIS , 2005, SPIE Remote Sensing.

[11]  C. Kramer,et al.  Optimization of heterodyne observations using Allan variance measurements , 2001, astro-ph/0105071.

[12]  T. Claeson,et al.  High-frequency limits of superconducting tunnel junction mixers , 1987 .

[13]  Todd R. Hunter,et al.  Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation , 2000 .

[14]  Vincent Desmaris,et al.  Gain bandwidth of NbN hot-electron bolometer terahertz mixers on 1.5 um Si3N4 /SiO2 membranes , 2007 .

[15]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[16]  H. Richter,et al.  NbN hot electron bolometric mixers for terahertz receivers , 2001 .

[17]  P. Siegel THz Instruments for Space , 2007, IEEE Transactions on Antennas and Propagation.

[18]  A. Kerr Suggestions for revised definitions of noise quantities, including quantum effects , 1999 .

[19]  Gabriel M. Rebeiz Millimeter-wave and terahertz integrated circuit antennas , 1992, Proc. IEEE.

[20]  Sergey Cherednichenko,et al.  Stability of HEB receivers at THz frequencies , 2004, SPIE Astronomical Telescopes + Instrumentation.

[21]  Michael Olberg,et al.  Heterodyne single-pixel facility instrumentation for the APEX Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[22]  Manfred Birk,et al.  Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies , 2001 .

[23]  P. Yagoubov,et al.  Spiral antenna NbN hot-electron bolometer mixer at submm frequencies , 1997, IEEE Transactions on Applied Superconductivity.

[24]  Marc J. Feldman,et al.  Quantum detection at millimeter wavelengths , 1985 .

[25]  I. Mehdi,et al.  An all-solid-state broad-band frequency multiplier chain at 1500 GHz , 2004, IEEE Transactions on Microwave Theory and Techniques.

[26]  Herbert Zirath,et al.  Cryogenic wide-band ultra-low-noise IF amplifiers operating at ultra-low DC power , 2003 .

[27]  Thomas G. Phillips,et al.  A Low Temperature Bolometer Heterodyne Receiver for Millimeter Wave Astronomy , 1973 .

[28]  Gregory N. Goltsman,et al.  Broadband ultrafast superconducting NbN detector for electromagnetic radiation , 1994 .

[29]  R. Schieder,et al.  Stability of heterodyne terahertz receivers , 2006 .

[30]  V. Vassilev,et al.  A 275–370 GHz Receiver Employing Novel Probe Structure , 2005 .

[31]  Göran Pilbratt,et al.  Herschel mission: status and observing opportunities , 2004, SPIE Astronomical Telescopes + Instrumentation.

[32]  Erich N. Grossman,et al.  Lithographic spiral antennas at short wavelengths , 1991 .

[33]  I. Angelov,et al.  The Direct Detection Effect in the Hot-Electron Bolometer Mixer Sensitivity Calibration , 2007, IEEE Transactions on Microwave Theory and Techniques.

[34]  Richard Lai,et al.  Terahertz frequency receiver instrumentation for Herschel's heterodyne instrument for far infrared (HIFI) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[35]  Peter H. Siegel,et al.  A 2.5-THz receiver front end for spaceborne applications , 2000 .

[36]  M. Kroug,et al.  Low-noise 0.8-0.96- and 0.96-1.12-THz superconductor-insulator-superconductor mixers for the herschel space observatory , 2006, IEEE Transactions on Microwave Theory and Techniques.

[37]  D. Pozar Microwave Engineering , 1990 .

[38]  Gabriel M. Rebeiz,et al.  Double-slot antennas on extended hemispherical and elliptical quartz dielectric lenses , 1993 .

[39]  Boris S. Karasik,et al.  Noise temperature limit of a superconducting hot‐electron bolometer mixer , 1996 .