Controllability of Positive Discrete-Time Switched Fractional Order Systems for Fixed Switching Sequence

In the article unconstrained controllability problem of positive discrete-time switched fractional order systems is addressed. A solution of discrete-time switched fractional order systems is presented. Additionally, a transition matrix of considered dynamical systems is given. A sufficient condition for unconstrained controllability in a given number of steps is formulated and proved using the general formula of solution of difference state equation. Finally, the illustrative examples are also presented.

[1]  Agamirza E. Bashirov,et al.  On Controllability Conception for Stochastic Systems , 1997 .

[2]  Tadeusz Kaczorek,et al.  Selected Problems of Fractional Systems Theory , 2011 .

[3]  Vahid Badri,et al.  On tuning fractional order [proportional-derivative] controllers for a class of fractional order systems , 2013, Autom..

[4]  Artur Babiarz,et al.  Output controllability of the discrete-time linear switched systems , 2016 .

[5]  Inés Tejado,et al.  Fractional Order Human Arm Dynamics With Variability Analyses , 2013 .

[6]  Jerzy Klamka,et al.  Controllability of discrete linear time-varying fractional system with constant delay , 2016 .

[7]  Jerzy Klamka,et al.  Controllability of nonlinear discrete systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[8]  Abdelghani Ouahab,et al.  Controllability results for functional semilinear differential inclusions in Fréchet spaces , 2005 .

[9]  J. Klamka,et al.  On constrained stochastic controllability of dynamical systems with multiple delays in control , 2012 .

[10]  Nazim I. Mahmudov,et al.  On Concepts of Controllability for Deterministic and Stochastic Systems , 1999 .

[11]  J. Klamka Controllability of dynamical systems , 1991, Mathematica Applicanda.

[12]  Adam Czornik,et al.  On controllability with respect to the expectation of discrete time jump linear systems , 2001, J. Frankl. Inst..

[13]  Jerzy Klamka,et al.  The selected problems of controllability of discrete-time switched linear systems with constrained switching rule , 2015 .

[14]  Jerzy Klamka,et al.  Stability and controllability of switched systems , 2013 .

[15]  Jerzy Klamka,et al.  Local controllability of semilinear fractional order systems with variable coefficients , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[16]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[17]  Jerzy Klamka,et al.  Controllability of switched linear dynamical systems , 2013, 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR).

[18]  Beata Sikora,et al.  Controllability of time-delay fractional systems with and without constraints , 2016 .

[19]  Dominik Kukla,et al.  OCENA STOPNIA USZKODZENIA EKSPLOATACYJNEGO MATERIAËU RUROCI ĄGU PAROWEGO NA PODSTAWIE ANALIZY ZMIAN WËA ŚCIWO ŚCI ZM ĘCZENIOWYCH I MIKROSTRUKTURY , 2011 .

[20]  Jerzy Klamka,et al.  Controllability of the fractional discrete linear time-varying infinite-dimensional systems , 2016 .

[21]  Ewa Pawluszewicz,et al.  Controllability of h-difference linear control systems with two fractional orders , 2012, Proceedings of the 13th International Carpathian Control Conference (ICCC).

[22]  Adam Czornik,et al.  On direct controllability of discrete time jump linear system , 2004, J. Frankl. Inst..

[23]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .