Grkpack fitting smoothing spline anova models for exponential families

Wahba, Wang, Gu, Klein and Klein introduced Smoothing Spline ANalysis of VAriance (SS ANOVA) method for data from exponential families. Based on RKPACK, which fits SS ANOVA models to Gaussian data, we introduce GRKPACK a collection of Fortran subroutines for binary, binomial, Poisson and Gamma data. We also show how to calculate Bayesian confidence intervals for SS ANOVA estimates.

[1]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[2]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[3]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[4]  B. Yandell,et al.  Automatic Smoothing of Regression Functions in Generalized Linear Models , 1986 .

[5]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[6]  Chong Gu Adaptive Spline Smoothing in Non-Gaussian Regression Models , 1990 .

[7]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[8]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[9]  Chong Gu,et al.  Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton Method , 1991, SIAM J. Sci. Comput..

[10]  Chong Gu,et al.  Structured Machine Learning for Soft Classification with Smoothing Spline ANOVA and Stacked Tuning, Testing, and Evaluation , 1993, NIPS.

[11]  G. Wahba,et al.  Soft Classiication, A. K. A. Risk Estimation, via Penalized Log Likelihood and Smoothing Spline Analysis of Variance , 1993 .

[12]  G. Wahba,et al.  Smoothing Spline ANOVA with Component-Wise Bayesian “Confidence Intervals” , 1993 .

[13]  G. Wahba,et al.  Simulation studies of smoothing parameter estimates and bayesian confidence intervals in bernoulli ss anova models , 1995 .

[14]  G. Wahba,et al.  Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy : the 1994 Neyman Memorial Lecture , 1995 .

[15]  G. Wahba,et al.  Smoothing Spline ANOVA for Exponential Families , with Application to theWisconsin Epidemiological Study of Diabetic Retinopathy 1 2 , 1995 .

[16]  G. Wahba,et al.  Bootstrap confidence intervals for smoothing splines and their comparison to bayesian confidence intervals , 1995 .

[17]  G Wahba,et al.  Using smoothing spline anova to examine the relation of risk factors to the incidence and progression of diabetic retinopathy. , 1997, Statistics in medicine.