Edge fault-tolerance analysis of maximally edge-connected graphs and super edge-connected graphs

Abstract Edge fault-tolerance of interconnection network is of significant important to the design and maintenance of multiprocessor systems. A connected graph G is maximally edge-connected (maximally-λ for short) if its edge-connectivity attains its minimum degree. G is super edge-connected (super-λ for short) if every minimum edge-cut isolates one vertex. The edge fault-tolerance of the maximally-λ (resp. super-λ) graph G with respect to the maximally-λ (resp. super-λ) property, denoted by m λ ( G ) (resp. S λ ( G ) ), is the maximum integer m for which G − S is still maximally-λ (resp. super-λ) for any edge subset S with | S | ≤ m . In this paper, we give upper and lower bounds on m λ ( G ) . Furthermore, we completely determine the exact values of m λ ( G ) and S λ ( G ) for vertex transitive graphs.

[1]  Gen-Huey Chen,et al.  Hamiltonian‐laceability of star graphs , 2000 .

[2]  S. Lakshmivarahan,et al.  Symmetry in Interconnection Networks Based on Cayley Graphs of Permutation Groups: A Survey , 1993, Parallel Comput..

[3]  Ralf Klasing,et al.  Vulnerability of super extra edge-connected graphs , 2020, J. Comput. Syst. Sci..

[4]  W. Mader,et al.  Minimalen-fach kantenzusammenhängende Graphen , 1971 .

[5]  M. Watkins Connectivity of transitive graphs , 1970 .

[6]  Wei Xiong,et al.  Fault Tolerance of λ-Optimal Graphs , 2018, Ars Comb..

[7]  Sun-Yuan Hsieh,et al.  Fault-free mutually independent Hamiltonian cycles in hypercubes with faulty edges , 2007, J. Comb. Optim..

[8]  S. Louis Hakimi,et al.  On Computing a Conditional Edge-Connectivity of a Graph , 1988, Inf. Process. Lett..

[9]  Jun-Ming Xu,et al.  Vulnerability of super edge-connected networks , 2014, Theor. Comput. Sci..

[10]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[11]  F. Boesch,et al.  Super line-connectivity properties of circulant graphs , 1986 .

[12]  Jixiang Meng Optimally super-edge-connected transitive graphs , 2003, Discret. Math..

[13]  Gen-Huey Chen,et al.  Longest fault-free paths in star graphs with vertex faults , 2001, Theor. Comput. Sci..

[14]  Jun-Ming Xu,et al.  On restricted edge-connectivity of graphs , 2002, Discret. Math..

[15]  Junming Xu Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.

[16]  Zhao Zhang,et al.  Edge fault tolerance of graphs with respect to super edge connectivity , 2012, Discret. Appl. Math..

[17]  Sheldon B. Akers,et al.  The Star Graph: An Attractive Alternative to the n-Cube , 1994, ICPP.

[18]  Shuang Zhao,et al.  Edge fault tolerance of interconnection networks with respect to maximally edge-connectivity , 2019, Theor. Comput. Sci..

[19]  Qiaoliang Li,et al.  Super edge connectivity properties of connected edge symmetric graphs , 1999, Networks.

[20]  Heping Zhang,et al.  Hamiltonian laceability in hypercubes with faulty edges , 2018, Discret. Appl. Math..

[21]  Qiao Li,et al.  Conditional edge connectivity properties, reliability comparisons and transitivity of graphs , 2002, Discret. Math..

[22]  Kai Feng,et al.  Edge Fault Tolerance of Cartesian Product Graphs on Super Restricted Edge Connectivity , 2018, Comput. J..

[23]  Lutz Volkmann,et al.  Edge-cuts leaving components of order at least three , 2002, Discret. Math..

[24]  Abdol-Hossein Esfahanian,et al.  Generalized Measures of Fault Tolerance with Application to N-Cube Networks , 1989, IEEE Trans. Computers.

[25]  Douglas Bauer,et al.  Combinatorial optimization problems in the analysis and design of probabilistic networks , 1985, Networks.

[26]  Mei Lu,et al.  Edge fault tolerance of super edge connectivity for three families of interconnection networks , 2012, Inf. Sci..

[27]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[28]  Mei Lu,et al.  Fault-tolerant diameter for three family interconnection networks , 2012, J. Comb. Optim..

[29]  Xu Jun-ming On Restricted Edge-Connectivity of Vertex-Transitive Graphs , 2004 .

[30]  Angelika Hellwig,et al.  Maximally edge-connected and vertex-connected graphs and digraphs: A survey , 2008, Discret. Math..

[31]  Angelika Hellwig,et al.  Sufficient conditions for graphs to be λ′‐optimal, super‐edge‐connected, and maximally edge‐connected , 2005 .

[32]  Chengfu Qin,et al.  On super 2-restricted and 3-restricted edge-connected vertex transitive graphs , 2011, Discret. Math..

[33]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[34]  Jixiang Meng,et al.  On a kind of restricted edge connectivity of graphs , 2002, Discret. Appl. Math..

[35]  W. Imrich On the connectivity of cayley graphs , 1979, J. Comb. Theory, Ser. B.

[36]  Min Xu,et al.  Fault diameter of Cartesian product graphs , 2005, Inf. Process. Lett..