The Role of Warm Conveyor Belts for the Intensification of Extratropical Cyclones in Northern Hemisphere Winter

AbstractThe role of warm conveyor belts (WCBs) and their associated positive low-level potential vorticity (PV) anomalies are investigated for extratropical cyclones in Northern Hemisphere winter, using ERA-Interim and composite techniques. The Spearman correlation coefficient of 0.68 implies a moderate to strong correlation between cyclone intensification and WCB strength. Hereby, cyclone intensification is quantified by the normalized maximum 24-h central sea level pressure deepening and WCB strength by the WCB air mass associated with the cyclone’s 24-h period of strongest deepening. Explosively intensifying cyclones typically have strong WCBs and pronounced WCB-related PV production in the cyclone center; they are associated with a WCB of type W2, which ascends close to the cyclone center. Cyclones with similar WCB strength but weak intensification are either diabatic Rossby waves, which do not interact with an upper-level disturbance, or cyclones where much of the WCB-related PV production occurs far...

[1]  R. J. Reed,et al.  A Model-aided Study of the Origin and Evolution of the Anomalously High Potential vorticity in the Inner Region of a Rapidly Deepening Marine Cyclone , 1992 .

[2]  R. Plant,et al.  On a threefold classification of extratropical cyclogenesis , 2003 .

[3]  F. Sanders,et al.  Synoptic-Dynamic Climatology of the “Bomb” , 1980 .

[4]  T. W. Harrold Mechanisms influencing the distribution of precipitation within baroclinic disturbances , 1973 .

[5]  Chris Snyder,et al.  Mesoscale Predictability of the “Surprise” Snowstorm of 24–25 January 2000 , 2002 .

[6]  H. Dacre,et al.  Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors , 2013 .

[7]  W. Boos,et al.  Perspectives on Moist Baroclinic Instability: Implications for the Growth of Monsoon Depressions , 2016 .

[8]  Heini Wernli,et al.  Warm Conveyor Belts in the ERA-Interim Dataset (1979–2010). Part II: Moisture Origin and Relevance for Precipitation , 2014 .

[9]  K. Browning,et al.  Interpretation of Satellite Imagery of A Rapidly Deepening Cyclone , 2007 .

[10]  H. Wernli,et al.  Growth and Decay of an Extra-Tropical Cyclone’s PV-Tower , 2000 .

[11]  D. Parker,et al.  Conditional convective heating in a baroclinic atmosphere : a model of convective frontogenesis , 1995 .

[12]  A. Joly,et al.  The essential ingredients leading to the explosive growth stage of the European wind storm Lothar of Christmas 1999 , 2010 .

[13]  M. Stoelinga A Potential Vorticity-Based Study of the Role of Diabatic Heating and Friction in a Numerically Simulated Baroclinic Cyclone , 1996 .

[14]  M. Mak On Moist Quasi-Geostrophic Baroclinic Instability , 1982 .

[15]  H. Wernli,et al.  Life Cycle Study of a Diabatic Rossby Wave as a Precursor to Rapid Cyclogenesis in the North Atlantic—Dynamics and Forecast Performance , 2011 .

[16]  Heini Wernli,et al.  Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: a case‐study with the limited‐area model COSMO , 2012 .

[17]  Heini Wernli,et al.  The LAGRANTO Lagrangian analysis tool – version 2.0 , 2015 .

[18]  Ulrich Corsmeier,et al.  The key role of diabatic processes in modifying the upper‐tropospheric wave guide: a North Atlantic case‐study , 2011 .

[19]  Uwe Ulbrich,et al.  Three extreme storms over Europe in December 1999 , 2001 .

[20]  Y. Kuo,et al.  Numerical Simulations of a Case of Explosive Marine Cyclogenesis , 1983 .

[21]  R. Plant,et al.  The dynamics of a midlatitude cyclone with very strong latent‐heat release , 2004 .

[22]  K. Browning Mesoscale Aspects of Extratropical Cyclones: An Observational Perspective , 1999 .

[23]  J. Whitaker,et al.  Cyclogenesis in a Saturated Environment , 1994 .

[24]  Mark A. Bourassa,et al.  Globally Gridded Satellite Observations for Climate Studies , 2011 .

[25]  L. Polvani,et al.  Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments , 2012, Climate Dynamics.

[26]  G. Rivière,et al.  Role of Moist Processes in the Tracks of Idealized Midlatitude Surface Cyclones , 2015 .

[27]  B. Hoskins,et al.  Two paradigms of baroclinic‐wave life‐cycle behaviour , 1993 .

[28]  E. T. Eady,et al.  Long Waves and Cyclone Waves , 1949 .

[29]  Paul J. Neiman,et al.  The Life Cycle of an Extratropical Marine Cyclone. Part II: Mesoscale Structure and Diagnostics , 1993 .

[30]  J. Gyakum,et al.  On the Evolution of the QE II Storm. II: Dynamic and Thermodynamic Structure , 1983 .

[31]  Toby N. Carlson,et al.  Airflow Through Midlatitude Cyclones and the Comma Cloud Pattern , 1980 .

[32]  P. Knippertz,et al.  Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones , 2012 .

[33]  Paul Roebber Statistical analysis and updated climatology of explosive cyclones , 1984 .

[34]  K. Browning,et al.  Structure of a frontal cyclone , 1994 .

[35]  R. Atlas The role of oceanic fluxes and initial data in the numerical prediction of an intense coastal storm , 1987 .

[36]  Lennart Bengtsson,et al.  Will Extratropical Storms Intensify in a Warmer Climate , 2009 .

[37]  Heini Wernli,et al.  Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999) , 2002 .

[38]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[39]  B. Hoskins,et al.  On the use and significance of isentropic potential vorticity maps , 2007 .

[40]  B. Hoskins,et al.  Simple Initial Value Problems and Mechanisms for Baroclinic Growth , 2001 .

[41]  J. Gyakum On the Evolution of the QE II Storm. I: Synoptic Aspects , 1983 .

[42]  L. Bosart The Presidents' Day Snowstorm of 18–19 February 1979: A Subsynoptic-Scale Event , 1981 .

[43]  Keith A. Browning,et al.  The structure of rainbands within a mid-latitude depression , 1973 .

[44]  John Methven,et al.  Potential vorticity in warm conveyor belt outflow , 2015 .

[45]  Louis W. Uccellini,et al.  A model-based diagnostic study of the rapid development phase of the Presidents' Day cyclone , 1988 .

[46]  Isabel F. Trigo,et al.  Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean , 2013 .

[47]  H. Wernli,et al.  A 10-yr Climatology of Diabatic Rossby Waves in the Northern Hemisphere , 2013 .

[48]  K. Emanuel,et al.  Baroclinic Instability in an Environment of Small Stability to Slantwise Moist Convection. Part I: Two-Dimensional Models , 1987 .

[49]  Heini Wernli,et al.  A 15-Year Climatology of Warm Conveyor Belts , 2004 .

[50]  H. Wernli,et al.  Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations , 2013 .

[51]  C. Schwierz,et al.  Surface Cyclones in the ERA-40 Dataset (1958–2001). Part I: Novel Identification Method and Global Climatology , 2006 .

[52]  H. Dacre,et al.  An Extratropical Cyclone Atlas: A Tool for Illustrating Cyclone Structure and Evolution Characteristics , 2012 .

[53]  A. Thorpe,et al.  Mesoscale dynamics of cold fronts: Structures described by dropsoundings in FRONTS 87 , 1991 .

[54]  H. Wernli,et al.  A PV Perspective on the Vertical Structure of Mature Midlatitude Cyclones in the Northern Hemisphere , 2012 .

[55]  Y. Kaspi,et al.  The Poleward Motion of Extratropical Cyclones from a Potential Vorticity Tendency Analysis , 2016 .

[56]  Heini Wernli,et al.  A Lagrangian‐based analysis of extratropical cyclones. I: The method and some applications , 1997 .

[57]  C. Spearman The proof and measurement of association between two things. By C. Spearman, 1904. , 1987, The American journal of psychology.

[58]  Alan J. Thorpe,et al.  The Evolution and Dynamical Role of Reduced Upper-Tropospheric Potential Vorticity in Intensive Observing Period One of FASTEX , 2000 .

[59]  Heini Wernli,et al.  Influence of Upstream Diabatic Heating upon an Alpine Event of Heavy Precipitation , 2001 .

[60]  Richard H. Grumm,et al.  Mesoscale Band Formation in Three Major Northeastern United States Snowstorms , 1999 .

[61]  K. Emanuel,et al.  Potential Vorticity Diagnostics of Cyclogenesis , 1991 .

[62]  T. Hewson,et al.  A classification of FASTEX cyclones using a height‐attributable quasi‐geostrophic vertical‐motion diagnostic , 2002 .

[63]  Kevin I. Hodges,et al.  Can Climate Models Capture the Structure of Extratropical Cyclones , 2010 .

[64]  P. Field,et al.  Precipitation and Cloud Structure in Midlatitude Cyclones , 2007 .

[65]  Richard H. Grumm,et al.  North Pacific Cold-Season Surface Cyclone Activity: 1975–1983 , 1989 .

[66]  B. Hoskins,et al.  Baroclinic Waves with Parameterized Effects of Moisture Interpreted Using Rossby Wave Components , 2010 .

[67]  Heini Wernli,et al.  Warm Conveyor Belts in the ERA-Interim Dataset (1979–2010): Part I: Climatology and Potential Vorticity Evolution , 2014 .

[68]  Robert S. Plant,et al.  The dichotomous structure of the warm conveyor belt , 2014 .

[69]  Joaquim G. Pinto,et al.  The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of windstorm Xynthia , 2014 .

[70]  Ying-Hwa Kuo,et al.  The Integrated Effect of Condensation in Numerical Simulations of Extratropical Cyclogenesis , 1993 .

[71]  A. Thorpe,et al.  Attribution concepts applied to the omega equation , 1996 .

[72]  Heini Wernli,et al.  A Lagrangian‐based analysis of extratropical cyclones. II: A detailed case‐study , 1997 .