Two‐Dimensional Si Nanosheets with Local Hexagonal Structure on a MoS2 Surface

The structural and electronic properties of a Si nanosheet (NS) grown onto a MoS2 substrate by means of molecular beam epitaxy are assessed. Epitaxially grown Si is shown to adapt to the trigonal prismatic surface lattice of MoS2 by forming two-dimensional nanodomains. The Si layer structure is distinguished from the underlying MoS2 surface structure. The local electronic properties of the Si nanosheet are dictated by the atomistic arrangement of the layer and unlike the MoS2 hosting substrate they are qualified by a gap-less density of states.

[1]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[2]  Stroscio,et al.  Electronic structure of the Si(111)2 x 1 surface by scanning-tunneling microscopy. , 1986, Physical review letters.

[3]  Haiyang Li,et al.  The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator , 2010, 1005.0449.

[4]  S. Fiechter Defect formation energies and homogeneity ranges of rock salt-, pyrite-, chalcopyrite- and molybdenite-type compound semiconductors , 2004 .

[5]  Theory of the scanning tunneling microscope , 1985 .

[6]  M. Fanciulli,et al.  Getting through the Nature of Silicene: An sp2–sp3 Two-Dimensional Silicon Nanosheet , 2013 .

[7]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[8]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[9]  H. Murata,et al.  Modulated STM images of ultrathin MoSe 2 films grown on MoS 2 (0001) studied by STM/STS , 1999 .

[10]  W. Dang,et al.  Topological insulator nanostructures for near-infrared transparent flexible electrodes. , 2012, Nature chemistry.

[11]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[12]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[13]  B. K. Gupta,et al.  Artificially stacked atomic layers: toward new van der Waals solids. , 2012, Nano letters.

[14]  Daniele Chiappe,et al.  Hindering the Oxidation of Silicene with Non‐Reactive Encapsulation , 2013 .

[15]  Chen,et al.  Origin of atomic resolution on metal surfaces in scanning tunneling microscopy. , 1990, Physical review letters.

[16]  Daniele Chiappe,et al.  Local Electronic Properties of Corrugated Silicene Phases , 2012, Advanced materials.

[17]  Tekman,et al.  Atomic theory of scanning tunneling microscopy. , 1989, Physical review. B, Condensed matter.

[18]  B. Liu,et al.  GaS and GaSe Ultrathin Layer Transistors , 2012, Advanced materials.

[19]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[20]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  Jijun Zhao,et al.  Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface , 2012, Scientific Reports.

[22]  D. Late,et al.  Enhanced field-emission behavior of layered MoS₂ sheets. , 2013, Small.

[23]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[24]  Y. S. Park,et al.  Band-gap expansion in the surface-localized electronic structure of MoS 2 (0002) , 2012 .

[25]  Dapeng Yu,et al.  Tunable bandgap in silicene and germanene. , 2012, Nano letters.

[26]  Clausen,et al.  Atomic-scale structure of single-layer MoS2 nanoclusters , 2000, Physical review letters.

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  A. Koma Van der Waals epitaxy for highly lattice-mismatched systems , 1999 .

[29]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[30]  C. Joachim,et al.  Interpretation of STM images: the MoS2 surface , 1996 .

[31]  R. Wiesendanger Scanning Probe Microscopy and Spectroscopy: Contents , 1994 .

[32]  G. Pourtois,et al.  An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. , 2013, Physical chemistry chemical physics : PCCP.

[33]  E. Sheka Why sp2‐like nanosilicons should not form: Insight from quantum chemistry , 2013 .

[34]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[35]  D. Late,et al.  Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates , 2012 .

[36]  K. Rosso,et al.  Metal island growth and dynamics on molybdenite surfaces , 2003 .

[37]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[38]  K. Ueno,et al.  Investigation of the growth mechanism of an InSe epitaxial layer on a MoS2 substrate , 2000 .

[39]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[40]  Tip induced localized states in scanning tunneling microscopy , 1988 .

[41]  Andre Stesmans,et al.  Can silicon behave like graphene? A first-principles study , 2010 .

[42]  L. Meng,et al.  Buckled silicene formation on Ir(111). , 2013, Nano letters.