A fully Lagrangian meshfree framework for PDEs on evolving surfaces

We propose a novel framework to solve PDEs on moving manifolds, where the evolving surface is represented by a moving point cloud. This has the advantage of avoiding the need to discretize the bulk volume around the surface, while also avoiding the need to have a global mesh. Distortions in the point cloud as a result of the movement are fixed by local adaptation. We first establish a comprehensive Lagrangian framework for arbitrary movement of curves and surfaces given by point clouds. Collision detection algorithms between point cloud surfaces are introduced, which also allow the handling of evolving manifolds with topological changes. We then couple this Lagrangian framework with a meshfree Generalized Finite Difference Method (GFDM) to approximate surface differential operators, which together give a method to solve PDEs on evolving manifolds. The applicability of this method is illustrated with a range of numerical examples, which include advection-diffusion equations with large deformations of the surface, curvature dependent geometric motion, and wave equations on evolving surfaces.

[1]  Peter A. Gilman,et al.  Magnetohydrodynamic “Shallow Water” Equations for the Solar Tachocline , 2000 .

[2]  J. Kuhnert,et al.  Meshfree generalized finite difference methods in soil mechanics—part II: numerical results , 2017 .

[3]  Steven J. Ruuth,et al.  PDEs on moving surfaces via the closest point method and a modified grid based particle method , 2016, J. Comput. Phys..

[4]  C. M. Elliott,et al.  Modelling cell motility and chemotaxis with evolving surface finite elements , 2012, Journal of The Royal Society Interface.

[5]  Sheng-Gwo Chen,et al.  Discrete Conservation Laws on Evolving Surfaces , 2016, SIAM J. Sci. Comput..

[6]  Antony Jameson,et al.  Meshless Scheme Based on Alignment Constraints , 2010 .

[7]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[8]  S. F. Nemadjieu A stable and convergent O-method for general moving hypersurfaces , 2014 .

[9]  Afonso Paiva,et al.  Mesh‐Free Discrete Laplace–Beltrami Operator , 2013, Comput. Graph. Forum.

[10]  O. Davydov,et al.  Numerical study of the RBF-FD level set based method for partial differential equations on evolving-in-time surfaces , 2017 .

[11]  Jörg Kuhnert,et al.  Finite Pointset Method for the Simulation of a Vehicle Travelling Through a Body of Water , 2015 .

[12]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[13]  Ted Belytschko,et al.  A meshfree contact-detection algorithm , 2001 .

[14]  R. Schaback,et al.  On generalized moving least squares and diffuse derivatives , 2012 .

[15]  Sudarshan Tiwari,et al.  Finite pointset method for simulation of the liquid-liquid flow field in an extractor , 2008, Comput. Chem. Eng..

[16]  A. Haufe,et al.  Airbag Simulation with LS-DYNA Past - Present - Future , 2007 .

[17]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[18]  Axel Klar,et al.  A flux conserving meshfree method for conservation laws , 2017, 1701.08973.

[19]  Hongkai Zhao,et al.  A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion , 2011, J. Comput. Phys..

[20]  H. Stone A simple derivation of the time‐dependent convective‐diffusion equation for surfactant transport along a deforming interface , 1990 .

[21]  Christian Lubich,et al.  Variational discretization of wave equations on evolving surfaces , 2014, Math. Comput..

[22]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[23]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[24]  Matthew A. Grayson,et al.  A short note on the evolution of a surface by its mean curvature , 1989 .

[25]  Hongkai Zhao,et al.  A grid based particle method for moving interface problems , 2009, J. Comput. Phys..

[26]  J. Onderik Ecient Neighbor Search for Particle-based Fluids , 2007 .

[27]  J. W. Leonard,et al.  Structural Modeling of Parachute Dynamics , 2000 .

[28]  Joerg Kuhnert,et al.  A meshfree generalized finite difference method for surface PDEs , 2018, Comput. Math. Appl..

[29]  Chia-Ming Fan,et al.  Numerical solutions of waves-current interactions by generalized finite difference method , 2018, Engineering Analysis with Boundary Elements.

[30]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[31]  Rüdiger Westermann,et al.  A Semi‐Lagrangian Closest Point Method for Deforming Surfaces , 2013, Comput. Graph. Forum.

[32]  Colin B. Macdonald,et al.  Calculus on Surfaces with General Closest Point Functions , 2012, SIAM J. Numer. Anal..

[33]  Moncho Gómez-Gesteira,et al.  Neighbour lists in smoothed particle hydrodynamics , 2011 .

[34]  Armin Iske On the Construction of Mass Conservative and Meshless Adaptive Particle Advection Methods , 2007 .

[35]  Theodore Kim,et al.  Closest point turbulence for liquid surfaces , 2013, TOGS.

[36]  Guirong Liu,et al.  Smoothed Point Interpolation Methods: G Space Theory and Weakened Weak Forms , 2013 .

[37]  Uwe F. Mayer,et al.  A Singular Example for the Averaged Mean Curvature Flow , 2001, Exp. Math..

[38]  Xingyu Wang,et al.  Lagrangian particle method for compressible fluid dynamics , 2016, J. Comput. Phys..

[39]  Yibao Li,et al.  Direct Discretization Method for the Cahn–Hilliard Equation on an Evolving Surface , 2018, J. Sci. Comput..

[40]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[41]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[42]  Benjamin Seibold,et al.  Solving One Dimensional Scalar Conservation Laws by Particle Management , 2008, 0801.1495.

[43]  S. Esedoglu Mean Curvature Flow , 2020 .

[44]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[45]  William P. Minicozzi,et al.  Mean curvature flow , 2015 .

[46]  U. Mayer A numerical scheme for moving boundary problems that are gradient flows for the area functional , 2000, European Journal of Applied Mathematics.

[47]  Edgar O. Reséndiz-Flores,et al.  Application of a generalized finite difference method to mould filling process , 2017, European Journal of Applied Mathematics.

[48]  Steven J. Ruuth,et al.  A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces , 2019, J. Comput. Phys..

[49]  Jian Liang,et al.  Solving Partial Differential Equations on Point Clouds , 2013, SIAM J. Sci. Comput..

[50]  B. Fornberg,et al.  Radial Basis Function-Generated Finite Differences: A Mesh-Free Method for Computational Geosciences , 2015 .

[51]  Oleg Davydov,et al.  Adaptive RBF-FD method for elliptic problems with point singularities in 2D , 2016, Appl. Math. Comput..

[52]  C. G. Koh,et al.  A particle method for two-phase flows with compressible air pocket , 2017 .

[53]  Grady B. Wright,et al.  A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.

[54]  Niloy J. Mitra,et al.  Estimating surface normals in noisy point cloud data , 2003, SCG '03.

[55]  Luis Gavete,et al.  Solving second order non-linear elliptic partial differential equations using generalized finite difference method , 2017, J. Comput. Appl. Math..

[56]  P. Koumoutsakos,et al.  A Lagrangian particle method for reaction–diffusion systems on deforming surfaces , 2010, Journal of mathematical biology.

[57]  Stefano Soatto,et al.  Region-Based Segmentation on Evolving Surfaces with Application to 3D Reconstruction of Shape and Piecewise Constant Radiance , 2004, ECCV.

[59]  Jörg Kuhnert,et al.  Point cloud movement for fully Lagrangian meshfree methods , 2017, J. Comput. Appl. Math..

[60]  Chandrasekhar Venkataraman,et al.  Backward difference time discretization of parabolic differential equations on evolving surfaces , 2013 .

[61]  Guirong Liu Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .