Multigrid method based on a space-time approach with standard coarsening for parabolic problems

In this work, a space-time multigrid method which uses standard coarsening in both temporal and spatial domains and combines the use of different smoothers is proposed for the solution of the heat equation in one and two space dimensions. In particular, an adaptive smoothing strategy, based on the degree of anisotropy of the discrete operator on each grid-level, is the basis of the proposed multigrid algorithm. Local Fourier analysis is used for the selection of the crucial parameter defining such an adaptive smoothing approach. Central differences are used to discretize the spatial derivatives and both implicit Euler and Crank–Nicolson schemes are considered for approximating the time derivative. For the solution of the second-order scheme, we apply a double discretization approach within the space-time multigrid method. The good performance of the method is illustrated through several numerical experiments.

[1]  S. Vanka,et al.  A Pressure Based Multigrid Procedure for the Navier-Stokes Equations on Unstructured Grids , 1996 .

[2]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[3]  Graham Horton,et al.  Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods , 2005, Computing.

[4]  Tao Zhou,et al.  Convergence Analysis for Three Parareal Solvers , 2015, SIAM J. Sci. Comput..

[5]  Achi Brandt,et al.  Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .

[6]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[7]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[8]  Shu-Lin Wu,et al.  Convergence analysis of some second-order parareal algorithms , 2015 .

[9]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[10]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[11]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[12]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[13]  Martin J. Gander,et al.  Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..

[14]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[15]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2014 .

[16]  A. Brandt Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L 2 -norm , 1994 .

[17]  Graham Horton,et al.  An Algorithm with Polylog Parallel Complexity for Solving Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[18]  Ignacio M. Llorente,et al.  Robust multigrid smoothers for three dimensional elliptic equations with strong anisotropies , 1998 .