Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials

To improve the detection limit of optical sensors, it is of paramount importance to understand light–matter interaction processes at a fundamental level. At room temperature, the ultimate detection limit is governed amongst others by fundamental thermodynamic fluctuations. Their effect on the properties of light that propagates in amorphous materials is not well understood. Here, we unveil and model for the first time a dominating high-frequency (terahertz-range) noise contribution in the phase of laser light having propagated in optical waveguides, leading to Raman-like sidebands in the optical output spectrum. A salient feature of our approach is to consider a mean relaxation time of the spontaneous random heat flux in the medium, which leads to a spatial correlation of the thermo-refractive noise. The resulting phase noise can be several orders of magnitude larger than what was predicted by earlier models. Our model allows us to explain the origin and specificities of the background that is observed in the Raman optical spectra of silicon nitride waveguides and silica optical fibers. Not only do these findings add a previously unknown dimension to the fundamental knowledge about noise in light–matter interaction, they also need to be taken into account in any optical system in which dynamic fluctuations at the picosecond (ps) or sub-ps level play a role.

[1]  Pottier Nonequilibrium Statistical Physics , 2010 .

[2]  S. Foster,et al.  Fundamental Thermal Noise in Distributed Feedback Fiber Lasers , 2007, IEEE Journal of Quantum Electronics.

[3]  R. A. McGill,et al.  Trace-gas Raman spectroscopy using functionalized waveguides , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[4]  K. Wanser,et al.  Fundamental phase noise limit in optical fibres due to temperature fluctuations , 1992 .

[5]  R. E. Bartolo,et al.  Thermal Phase Noise Measurements in Optical Fiber Interferometers , 2012, IEEE Journal of Quantum Electronics.

[6]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[7]  J. Rubí,et al.  Hydrodynamical fluctuations in extended irreversible thermodynamics , 1980 .

[8]  R. Houdré,et al.  Group velocity and energy transport velocity near the band edge of a disordered coupled cavity waveguide: an analytical approach , 2010 .

[9]  D. Jou,et al.  Extended irreversible thermodynamics of heat conduction , 1988 .

[10]  The Thermo Optic Coefficient of Amorphous SiN Films in the Near-Infrared and Visible Regions and Its Experimental Determination , 2013 .

[11]  Roel Baets,et al.  Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy , 2017, Materials.

[12]  S. Merlo,et al.  Thermodynamic phase noise in fibre interferometers , 1996 .

[13]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[14]  Reuben Shuker,et al.  Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials , 1970 .

[15]  Tang Li,et al.  Observation of Fundamental Thermal Noise in Optical Fibers down to Infrasonic Frequencies , 2015 .

[16]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[17]  M Barrett,et al.  HEAT WAVES , 2019, The Year of the Femme.

[18]  Roel Baets,et al.  Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides. , 2014, Optics letters.

[19]  R. J. Hill Corrections to Taylor's frozen turbulence approximation , 1996 .

[20]  Michael L. Gorodetsky,et al.  Fundamental thermal fluctuations in microspheres , 2004 .

[21]  P. Mori-Sánchez,et al.  Compressibility and thermal expansion of cubic silicon nitride , 2002 .

[22]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[23]  S. Grossmann The Spectrum of Turbulence , 2003 .

[24]  J. S. Hey,et al.  Fluctuations in Cosmic Radiation at Radio-Frequencies , 1946, Nature.