Isolation of two species of Chlamydomonas reinhardtii flagellar mutants, ida5 and ida6, that lack a newly identified heavy chain of the inner dynein arm.

Two novel Chlamydomonas mutants, ida5 and ida6, that lack subsets of inner-arm dynein have been isolated and mapped to discrete loci on the right arm of linkage group XIV. Of the seven different inner-arm dynein subspecies (a, b, c, d, e, f and g) identified by ion-exchange chromatography, ida5 lacks a, c, d and e, while ida6 lacks e alone; these are the only mutants that have been shown to lack subspecies e. Both strains can swim, albeit more slowly than the wild type. Hence, subspecies e must contribute to flagellar movement although it is unnecessary for the generation of undulating movement.

[1]  R. Kamiya,et al.  Translocation and rotation of microtubules caused by multiple species of Chlamydomonas inner-arm dynein , 1992 .

[2]  S. Dutcher,et al.  Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms , 1992, The Journal of cell biology.

[3]  D. Mastronarde,et al.  Arrangement of inner dynein arms in wild-type and mutant flagella of Chlamydomonas , 1992, The Journal of cell biology.

[4]  H. Sakakibara,et al.  A Chlamydomonas outer arm dynein mutant missing the alpha heavy chain , 1991, The Journal of cell biology.

[5]  S. Tsukita,et al.  Double-rowed Organization of Inner Dynein Arms in Chlamydomonas Flagella Revealed by Tilt-Series Thin-Section Electron Microscopy , 1991 .

[6]  G. Piperno,et al.  The proximal portion of Chlamydomonas flagella contains a distinct set of inner dynein arms , 1991, The Journal of cell biology.

[7]  E. Kurimoto,et al.  Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein , 1991, The Journal of cell biology.

[8]  W. Sale,et al.  Three distinct inner dynein arms in Chlamydomonas flagella: molecular composition and location in the axoneme , 1990, The Journal of cell biology.

[9]  R. Kamiya Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii , 1988, The Journal of cell biology.

[10]  R. Kamiya,et al.  Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii. , 1987, Experimental cell research.

[11]  U. Goodenough,et al.  High-pressure liquid chromatography fractionation of Chlamydomonas dynein extracts and characterization of inner-arm dynein subunits. , 1987, Journal of molecular biology.

[12]  G. Witman,et al.  Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas , 1984, The Journal of cell biology.

[13]  J. Jarvik,et al.  Oversized flagellar membrane protein in paralyzed mutants of Chlamydomonas reinhardrii , 1980, The Journal of cell biology.

[14]  G. Piperno,et al.  Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. , 1979, The Journal of biological chemistry.

[15]  G. Piperno,et al.  An actin-like protein is a component of axonemes from Chlamydomonas flagella. , 1979, The Journal of biological chemistry.

[16]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[17]  R. Kamiya Selection of Chlamydomonas dynein mutants. , 1991, Methods in enzymology.

[18]  H. Gross,et al.  Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels , 1987 .

[19]  C. Brokaw,et al.  Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. , 1987, Cell motility and the cytoskeleton.

[20]  G. Witman,et al.  Purification and polypeptide composition of dynein ATPases from Chlamydomonas flagella. , 1982, Cell motility.

[21]  W. T. Ebersold,et al.  The genetics and cytology of Chlamydomonas. , 1960, Annual review of microbiology.