Clique coloring of dense random graphs

The clique chromatic number of a graph G=(V,E) is the minimum number of colors in a vertex coloring so that no maximal (with respect to containment) clique is monochromatic. We prove that the clique chromatic number of the binomial random graph G=G(n,1/2) is, with high probability, \Omega(log n). This settles a problem of McDiarmid, Mitsche and Pralat who proved that it is O(log n) with high probability.

[1]  Erfang Shan,et al.  Clique-transversal sets and clique-coloring in planar graphs , 2014, Eur. J. Comb..

[2]  Sulamita Klein,et al.  On clique-colouring of graphs with few P4’s , 2011, Journal of the Brazilian Computer Society.

[3]  Zsolt Tuza,et al.  Clique-transversal sets of line graphs and complements of line graphs , 1991, Discret. Math..

[4]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[5]  Bojan Mohar,et al.  The Grötzsch Theorem for the Hypergraph of Maximal Cliques , 1999, Electron. J. Comb..

[6]  Noga Alon,et al.  Multi-Node Graphs: A Framework for Multiplexed Biological Assays , 2006, J. Comput. Biol..

[7]  Zsolt Tuza,et al.  On the complexity of bicoloring clique hypergraphs of graphs (extended abstract) , 2000, SODA '00.

[8]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[9]  David Défossez,et al.  Clique‐coloring some classes of odd‐hole‐free graphs , 2006, J. Graph Theory.

[11]  Márcia R. Cerioli,et al.  Clique-Coloring Circular-Arc Graphs , 2009, Electron. Notes Discret. Math..

[12]  Sylvain Gravier,et al.  Coloring the Maximal Cliques of Graphs , 2004, SIAM J. Discret. Math..

[13]  Sylvain Gravier,et al.  Coloring the hypergraph of maximal cliques of a graph with no long path , 2003, Discret. Math..

[14]  C. N. Campos,et al.  Colouring Clique-Hypergraphs of Circulant Graphs , 2008, Graphs Comb..

[15]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[16]  Erfang Shan,et al.  Clique-Coloring Claw-Free Graphs , 2016, Graphs Comb..