Targeted Iterative Filtering

The assessment of image denoising results depends on the respective application area, i.e. image compression, still-image acquisition, and medical images require entirely different behavior of the applied denoising method. In this paper we propose a novel, nonlinear diffusion scheme that is derived from a linear diffusion process in a value space determined by the application. We show that application-driven linear diffusion in the transformed space compares favorably with existing nonlinear diffusion techniques.

[1]  Michael Vollmer,et al.  Infrared Thermal Imaging: Fundamentals, Research and Applications , 2010 .

[2]  Wolfgang Förstner,et al.  Image Preprocessing for Feature Extraction in Digital Intensity, Color and Range Images , 2000 .

[3]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[4]  Michael Felsberg,et al.  Energy Tensors: Quadratic, Phase Invariant Image Operators , 2005, DAGM-Symposium.

[5]  Michael Felsberg Autocorrelation-Driven Diffusion Filtering , 2011, IEEE Transactions on Image Processing.

[6]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  Brian A. Wandell,et al.  Rendering high dynamic range images , 2000, Electronic Imaging.

[9]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[10]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[11]  M. Prokop,et al.  Spiral and multislice computed tomography of the body , 2003 .

[12]  Karol Mikula,et al.  Slowed Anisotropic Diffusion , 1997, Scale-Space.

[13]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.