Vision in the ultraviolet

[1]  S. Yokoyama,et al.  Genetics and evolution of ultraviolet vision in vertebrates , 2000, FEBS letters.

[2]  K. Arikawa,et al.  Ultraviolet and violet receptors express identical mRNA encoding an ultraviolet-absorbing opsin: identification and histological localization of two mRNAs encoding short-wavelength-absorbing opsins in the retina of the butterfly Papilio xuthus. , 2000, The Journal of experimental biology.

[3]  M. Antoch,et al.  The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.

[4]  P. Robinson,et al.  Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth , 2000, Visual Neuroscience.

[5]  K. Palczewski,et al.  Crystal structure of rhodopsin: A G protein-coupled receptor. , 2000, Science.

[6]  J. Bowmaker,et al.  Visual pigment reconstitution in intact goldfish retina using synthetic retinaldehyde isomers , 2000, Vision Research.

[7]  N. Blow,et al.  Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Cronin,et al.  Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. , 2000, Biochemistry.

[9]  T. Kocher,et al.  Visual pigments of African cichlid fishes: evidence for ultraviolet vision from microspectrophotometry and DNA sequences , 2000, Vision Research.

[10]  I. N. Flamarique The ontogeny of ultraviolet sensitivity, cone disappearance and regeneration in the sockeye salmon Oncorhynchus nerka. , 2000 .

[11]  Justin Marshall,et al.  Ultraviolet vision: The colourful world of the mantis shrimp , 1999, Nature.

[12]  I. Cuthill,et al.  Preferences for ultraviolet partners in the blue tit , 1999, Animal Behaviour.

[13]  Y. Iwasa,et al.  Formation of cone mosaic of zebrafish retina. , 1999, Journal of theoretical biology.

[14]  J. Bowmaker,et al.  Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences , 1999, Vision Research.

[15]  G. Kochendoerfer,et al.  How color visual pigments are tuned. , 1999, Trends in biochemical sciences.

[16]  Thomas W. Cronin,et al.  Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication , 1999, Current Biology.

[17]  D. Hyde,et al.  Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins , 1999, Visual Neuroscience.

[18]  S. O. Smith,et al.  Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine- and 13C-glycine-labeled opsin in a stable cell line. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Mollon,et al.  Molecular evolution of trichromacy in primates , 1998, Vision Research.

[20]  Kate S. Carroll,et al.  Mechanisms of Spectral Tuning in Blue Cone Visual Pigments , 1998, The Journal of Biological Chemistry.

[21]  D M Hunt,et al.  The rhodopsin gene of the cuttlefish Sepia officinalis: sequence and spectral tuning. , 1998, The Journal of experimental biology.

[22]  L. Peichl,et al.  Absence of short‐wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia) , 1998, The European journal of neuroscience.

[23]  J. Bowmaker Evolution of colour vision in vertebrates , 1998, Eye.

[24]  D M Hunt,et al.  The visual pigments of the bottlenose dolphin (Tursiops truncatus) , 1998, Visual Neuroscience.

[25]  N. Pierce,et al.  Honeybee Blue- and Ultraviolet-Sensitive Opsins: Cloning, Heterologous Expression in Drosophila, and Physiological Characterization , 1998, The Journal of Neuroscience.

[26]  G H Jacobs,et al.  The topography of rod and cone photoreceptors in the retina of the ground squirrel , 1998, Visual Neuroscience.

[27]  S. Kawamura,et al.  Regeneration of ultraviolet pigments of vertebrates , 1998, FEBS letters.

[28]  J. Bowmaker,et al.  The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). , 1998, The Biochemical journal.

[29]  S. Kawamura,et al.  Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis) , 1998, Vision Research.

[30]  F. Tokunaga,et al.  The primary structure and distribution of killifish visual pigments , 1997, Vision Research.

[31]  J. Baldwin,et al.  An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. , 1997, Journal of molecular biology.

[32]  M. Chase,et al.  Three opsin-encoding cDNAS from the compound eye of Manduca sexta. , 1997, The Journal of experimental biology.

[33]  I. Cuthill,et al.  Ultraviolet plumage colors predict mate preferences in starlings. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Bowmaker,et al.  Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds , 1997, Vision Research.

[35]  S. O. Smith,et al.  The steric trigger in rhodopsin activation. , 1997, Journal of molecular biology.

[36]  P. Raymond,et al.  Spatiotemporal coordination of rod and cone photoreceptor differentiation in goldfish retina , 1997, The Journal of comparative neurology.

[37]  H. Kandori,et al.  Water and peptide backbone structure in the active center of bovine rhodopsin. , 1997, Biochemistry.

[38]  A. Milam,et al.  Molecular cloning and localization of rhodopsin kinase in the mammalian pineal , 1997, Visual Neuroscience.

[39]  Á. Szél,et al.  Distribution of cone photoreceptors in the mammalian retina , 1996, Microscopy research and technique.

[40]  S. Kawamura,et al.  Phylogenetic Relationships among Short Wavelength-sensitive Opsins of American Chameleon (Anolis carolinensis) and Other Vertebrates , 1996, Vision Research.

[41]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[42]  G. H. Jacobs,et al.  Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[43]  Innes C. Cuthill,et al.  Ultraviolet vision and mate choice in zebra finches , 1996, Nature.

[44]  P. Raymond,et al.  Molecular Cloning and characterization of the putative ultraviolet-sensitive visual pigment of goldfish , 1996, Vision Research.

[45]  M C Peitsch,et al.  ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. , 1996, Biochemical Society transactions.

[46]  P. Hargrave,et al.  Projection structure of frog rhodopsin in two crystal forms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. O. Smith,et al.  High-resolution structural studies of the retinal--Glu113 interaction in rhodopsin. , 1995, Biophysical chemistry.

[48]  J. Mollon,et al.  Sequence and evolution of the blue cone pigment gene in Old and New World primates. , 1995, Genomics.

[49]  C. Sandorfy,et al.  RETINYLIDENE‐OPSIN SCHIFF BASE CHROMOPHORES AND THEIR ACCESSIBILITY TO WATER , 1995 .

[50]  D. Hartl,et al.  Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. , 1995, Molecular phylogenetics and evolution.

[51]  J. Viitala,et al.  Attraction of kestrels to vole scent marks visible in ultraviolet light , 1995, Nature.

[52]  Á. Szél,et al.  Two different visual pigments in one retinal cone cell , 1994, Neuron.

[53]  J. Mollon,et al.  Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and old world monkeys , 1994, Vision Research.

[54]  K. Fahmy,et al.  Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin. , 1994, Biochemistry.

[55]  C. Hawryshyn,et al.  The developmental trajectory of ultraviolet photosensitivity in rainbow trout is altered by thyroxine , 1994, Vision Research.

[56]  W. McFarland,et al.  Ultraviolet visual pigments in marine fishes of the family pomacentridae , 1994, Vision Research.

[57]  J. Nathans,et al.  Murine and bovine blue cone pigment genes: cloning and characterization of two new members of the S family of visual pigments. , 1994, Genomics.

[58]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[59]  R. Callender,et al.  Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. , 1994, Biophysical journal.

[60]  D. Oprian,et al.  Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness , 1994, Nature.

[61]  J. Bowmaker,et al.  The molecular basis of a spectral shift in the rhodopsins of two species of squid from different photic environments , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  K. Fahmy,et al.  Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Leo J. Fleishman,et al.  Ultraviolet vision in lizards , 1993, Nature.

[64]  T. Cronin,et al.  The retinoids of seven species of mantis shrimp , 1993, Visual Neuroscience.

[65]  M. Sheves,et al.  pKa of the protonated Schiff base of bovine rhodopsin. A study with artificial pigments. , 1993, Biophysical journal.

[66]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[67]  J. Baldwin The probable arrangement of the helices in G protein‐coupled receptors. , 1993, The EMBO journal.

[68]  R. Hara,et al.  Cloning and nucleotide sequence of cDNA for rhodopsin of the squid Todarodes pacificus , 1993, FEBS letters.

[69]  W. McFarland,et al.  A chromatic action spectrum for planktonic predation by juvenile yellow perch, Perca flavescens , 1993 .

[70]  J. Nathans,et al.  Cloning and expression of goldfish opsin sequences. , 1993, Biochemistry.

[71]  J Nathans,et al.  Absorption spectra of the hybrid pigments responsible for anomalous color vision. , 1992, Science.

[72]  K Kirschfeld,et al.  Ectopic expression of ultraviolet-rhodopsins in the blue photoreceptor cells of Drosophila: visual physiology and photochemistry of transgenic animals , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  Y. Fukada,et al.  Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[74]  H. Khorana,et al.  Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix. , 1992, Biochemistry.

[75]  J. Mollon,et al.  Sequence divergence and copy number of the middle- and long-wave photopigment genes in old world monkeys , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[76]  J. Bowmaker,et al.  Ultraviolet-sensitive cones in the goldfish , 1991, Vision Research.

[77]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[78]  J D Mollon,et al.  Photosensitive and photostable pigments in the retinae of Old World monkeys. , 1991, The Journal of experimental biology.

[79]  N. Ryba,et al.  Molecular cloning and primary structure of squid (Loligo forbesi) rhodopsin, a phospholipase C-directed G-protein-linked receptor. , 1991, The Biochemical journal.

[80]  J Nathans,et al.  Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. , 1990, Biochemistry.

[81]  J. Nathans Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. , 1990, Biochemistry.

[82]  D. Oprian,et al.  Effect of carboxylic acid side chains on the absorption maximum of visual pigments. , 1989, Science.

[83]  H. Khorana,et al.  Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[84]  N. Justin Marshall,et al.  A unique colour and polarization vision system in mantis shrimps , 1988, Nature.

[85]  Y. Ovchinnikov,et al.  Octopus rhodopsin Amino acid sequence deduced from cDNA , 1988, FEBS letters.

[86]  J. Bowmaker,et al.  Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta): Age-dependent changes , 1987, Vision Research.

[87]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[88]  G. Rubin,et al.  A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  G. Rubin,et al.  A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogaster , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  E. Meyerowitz,et al.  An opsin gene that is expressed only in the R7 photoreceptor cell of Drosophila. , 1987, The EMBO journal.

[91]  D. Pappin,et al.  The opsin family of proteins. , 1986, The Biochemical journal.

[92]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[93]  G. Rubin,et al.  An opsin gene expressed in only one photoreceptor cell type of the Drosophila eye , 1986, Cell.

[94]  Richard L. Martin,et al.  The Drosophila ninaE gene encodes an opsin , 1985, Cell.

[95]  G. Rubin,et al.  Isolation and structure of a rhodopsin gene from D. melanogaster , 1985, Cell.

[96]  F. I. Hárosi,et al.  Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. , 1983, Science.

[97]  J. Mollon,et al.  Human visual pigments: microspectrophotometric results from the eyes of seven persons , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[98]  T. Goldsmith,et al.  Hummingbirds see near ultraviolet light. , 1980, Science.

[99]  Levine Js,et al.  Visual pigments in teleost fishes : effects of habitat, microhabitat, and behavior on visual system evolution , 1979 .

[100]  L. Stryer,et al.  Retinal has a highly dipolar vertically excited singlet state: implications for vision. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Inga-Britt Ahlbert Organization of the Cone Cells in the Retinae of Salmon (Salmo salar) and Trout (Salmo trutta trutta) in Relation to Their Feeding Habits , 1976 .

[102]  A. Kropf,et al.  THE MECHANISM OF BLEACHING RHODOPSIN , 1958, Annals of the New York Academy of Sciences.

[103]  L. Chittka,et al.  The evolution of color vision in insects. , 2001, Annual review of entomology.

[104]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[105]  B. Appukuttan Molecular genetics of mammalian blue cone pigment genes , 1997 .

[106]  W. McFarland,et al.  The underwater visual environment , 1990 .

[107]  F. Crescitelli,et al.  The Visual Cells and Visual Pigments of the Vertebrate Eye , 1972 .