Binary Codes of Odd-order Nets
暂无分享,去创建一个
[1] T. Ostrom. Nets with critical deficiency. , 1964 .
[2] Saunders Mac Lane,et al. A combinatorial condition for planar graphs , 1937 .
[3] Philippe Delsarte. Majority Logic Decodable Codes Derived from Finite Inversive Planes , 1971, Inf. Control..
[4] Amin Shokrollahi,et al. Codes and Graphs , 2000, STACS.
[5] G. Eric Moorhouse. Bruck nets, codes, and characters of loops , 1991, Des. Codes Cryptogr..
[6] Edward F. Assmus. The Category of Linear Codes , 1998, IEEE Trans. Inf. Theory.
[7] Vladimir D. Tonchev,et al. Classification of affine resolvable 2-(27, 9, 4) designs , 1996 .
[8] Jennifer D. Key,et al. Designs and their codes , 1992, Cambridge tracts in mathematics.
[9] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[10] S. S. Shrikhande,et al. A note on mutually orthogonal latin squares , 1961 .
[11] Tayuan Huang,et al. (s, R; Mu)-nets and Alternating Forms Graphs , 1993, Discret. Math..
[12] S. S. Shrikhande,et al. The Uniqueness of the $\mathrm{L}_2$ Association Scheme , 1959 .
[13] R. H. Bruck. Finite Nets, I. Numerical Invariants , 1951, Canadian Journal of Mathematics.
[14] W. T. Tutte. An algorithm for determining whether a given binary matroid is graphic. , 1960 .
[15] J. Thas. The affine planeAG(2,q),q odd, has a unique one point extension , 1994 .
[16] R. H. Bruck. Finite nets. II. Uniqueness and imbedding. , 1963 .
[17] S. Shrikhande. The uniqueness of the L_2 association scheme , 1958 .