Binary Codes of Odd-order Nets

[1]  T. Ostrom Nets with critical deficiency. , 1964 .

[2]  Saunders Mac Lane,et al.  A combinatorial condition for planar graphs , 1937 .

[3]  Philippe Delsarte Majority Logic Decodable Codes Derived from Finite Inversive Planes , 1971, Inf. Control..

[4]  Amin Shokrollahi,et al.  Codes and Graphs , 2000, STACS.

[5]  G. Eric Moorhouse Bruck nets, codes, and characters of loops , 1991, Des. Codes Cryptogr..

[6]  Edward F. Assmus The Category of Linear Codes , 1998, IEEE Trans. Inf. Theory.

[7]  Vladimir D. Tonchev,et al.  Classification of affine resolvable 2-(27, 9, 4) designs , 1996 .

[8]  Jennifer D. Key,et al.  Designs and their codes , 1992, Cambridge tracts in mathematics.

[9]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[10]  S. S. Shrikhande,et al.  A note on mutually orthogonal latin squares , 1961 .

[11]  Tayuan Huang,et al.  (s, R; Mu)-nets and Alternating Forms Graphs , 1993, Discret. Math..

[12]  S. S. Shrikhande,et al.  The Uniqueness of the $\mathrm{L}_2$ Association Scheme , 1959 .

[13]  R. H. Bruck Finite Nets, I. Numerical Invariants , 1951, Canadian Journal of Mathematics.

[14]  W. T. Tutte An algorithm for determining whether a given binary matroid is graphic. , 1960 .

[15]  J. Thas The affine planeAG(2,q),q odd, has a unique one point extension , 1994 .

[16]  R. H. Bruck Finite nets. II. Uniqueness and imbedding. , 1963 .

[17]  S. Shrikhande The uniqueness of the L_2 association scheme , 1958 .