A Design Space for Gaze Interaction on Head-mounted Displays

Augmented and virtual reality (AR/VR) has entered the mass market and, with it, will soon eye tracking as a core technology for next generation head-mounted displays (HMDs). In contrast to existing gaze interfaces, the 3D nature of AR and VR requires estimating a user's gaze in 3D. While first applications, such as foveated rendering, hint at the compelling potential of combining HMDs and gaze, a systematic analysis is missing. To fill this gap, we present the first design space for gaze interaction on HMDs. Our design space covers human depth perception and technical requirements in two dimensions aiming to identify challenges and opportunities for interaction design. As such, our design space provides a comprehensive overview and serves as an important guideline for researchers and practitioners working on gaze interaction on HMDs. We further demonstrate how our design space is used in practice by presenting two interactive applications: EyeHealth and XRay-Vision.

[1]  Kang Ryoung Park,et al.  3D gaze tracking method using Purkinje images on eye optical model and pupil , 2012 .

[2]  Mtm Marc Lambooij,et al.  Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review , 2009 .

[3]  Gordon Wetzstein,et al.  Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays , 2017, Proceedings of the National Academy of Sciences.

[4]  Allen G. Taylor,et al.  What Is the Microsoft HoloLens , 2016 .

[5]  Sheng-Wen Shih,et al.  A novel approach to 3-D gaze tracking using stereo cameras , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Nicolas Roussel,et al.  1 € filter: a simple speed-based low-pass filter for noisy input in interactive systems , 2012, CHI.

[7]  Kent Lyons,et al.  Looking at or through?: using eye tracking to infer attention location for wearable transparent displays , 2014, SEMWEB.

[8]  Hans-Werner Gellersen,et al.  Pursuits: spontaneous interaction with displays based on smooth pursuit eye movement and moving targets , 2013, UbiComp.

[9]  Philipp Slusallek,et al.  Predicting the gaze depth in head-mounted displays using multiple feature regression , 2018, ETRA.

[10]  Michael Rohs,et al.  The smart phone: a ubiquitous input device , 2006, IEEE Pervasive Computing.

[11]  P. Milgram,et al.  A Taxonomy of Mixed Reality Visual Displays , 1994 .

[12]  Henry Been-Lirn Duh,et al.  Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[13]  Pierre-Yves Laffont,et al.  Verifocal: a platform for vision correction and accommodation in head-mounted displays , 2018, SIGGRAPH Emerging Technologies.

[14]  Enrico Rukzio,et al.  EyeVR: low-cost VR eye-based interaction , 2016, UbiComp Adjunct.

[15]  F. Zwicky,et al.  The Morphological Approach to Discovery, Invention, Research and Construction , 1967 .

[16]  Gordon Wetzstein,et al.  Focus 3D: Compressive accommodation display , 2013, TOGS.

[17]  Jörg Müller,et al.  GazeHorizon: enabling passers-by to interact with public displays by gaze , 2014, UbiComp.

[18]  Lucas Paletta,et al.  Smartphone eye tracking toolbox: accurate gaze recovery on mobile displays , 2014 .

[19]  Stephan Reichelt,et al.  Depth cues in human visual perception and their realization in 3D displays , 2010, Defense + Commercial Sensing.

[20]  Thies Pfeiffer Measuring and visualizing attention in space with 3D attention volumes , 2012, ETRA '12.

[21]  Lucas Paletta,et al.  3D recovery of human gaze in natural environments , 2013, Electronic Imaging.

[22]  Donald H. House,et al.  Comparing estimated gaze depth in virtual and physical environments , 2014, ETRA.

[23]  Florian Alt,et al.  GazeTouchPass: Multimodal Authentication Using Gaze and Touch on Mobile Devices , 2016, CHI Extended Abstracts.

[24]  David M. Hoffman,et al.  The zone of comfort: Predicting visual discomfort with stereo displays. , 2011, Journal of vision.

[25]  Paul Milgram,et al.  Perceptual issues in augmented reality , 1996, Electronic Imaging.

[26]  Hans-Werner Gellersen,et al.  Gaze + pinch interaction in virtual reality , 2017, SUI.

[27]  Pushkar Shukla,et al.  3D gaze estimation in the scene volume with a head-mounted eye tracker , 2018, COGAIN@ETRA.

[28]  Jeff B. Pelz,et al.  3D point-of-regard, position and head orientation from a portable monocular video-based eye tracker , 2008, ETRA '08.

[29]  James D. Foley,et al.  The human factors of computer graphics interaction techniques , 1984, IEEE Computer Graphics and Applications.

[30]  Thies Pfeiffer,et al.  EyeSee3D: a low-cost approach for analyzing mobile 3D eye tracking data using computer vision and augmented reality technology , 2014, ETRA.

[31]  Mark Billinghurst,et al.  Pinpointing: Precise Head- and Eye-Based Target Selection for Augmented Reality , 2018, CHI.

[32]  Jock D. Mackinlay,et al.  The design space of input devices , 1990, CHI '90.

[33]  Joohwan Kim,et al.  Towards foveated rendering for gaze-tracked virtual reality , 2016, ACM Trans. Graph..

[34]  Andreas Bulling,et al.  On the Verge: Voluntary Convergences for Accurate and Precise Timing of Gaze Input , 2016, CHI Extended Abstracts.

[35]  Gordon Wetzstein,et al.  Accommodation-invariant computational near-eye displays , 2017, ACM Trans. Graph..

[36]  Campbell Fw A method for measuring the depth of field of the human eye. , 1954 .

[37]  Jörg Müller,et al.  Eye tracking for public displays in the wild , 2015, Personal and Ubiquitous Computing.

[38]  Rafael Ballagas,et al.  The Design Space of 3D Printable Interactivity , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[39]  Andreas Bulling,et al.  Towards a Symbiotic Human-Machine Depth Sensor: Exploring 3D Gaze for Object Reconstruction , 2018, UIST.

[40]  Jock D. Mackinlay,et al.  A morphological analysis of the design space of input devices , 1991, TOIS.

[41]  F. Toates,et al.  Accommodation function of the human eye. , 1972, Physiological reviews.

[42]  Ronald Azuma,et al.  A Survey of Augmented Reality , 1997, Presence: Teleoperators & Virtual Environments.

[43]  Arindam Dey,et al.  Estimating Gaze Depth Using Multi-Layer Perceptron , 2017, 2017 International Symposium on Ubiquitous Virtual Reality (ISUVR).

[44]  Yusuke Sugano,et al.  3D gaze estimation from 2D pupil positions on monocular head-mounted eye trackers , 2016, ETRA.

[45]  George Drettakis,et al.  Accommodation and Comfort in Head-Mounted Displays , 2018 .

[46]  Fumio Kishino,et al.  Augmented reality: a class of displays on the reality-virtuality continuum , 1995, Other Conferences.

[47]  Enkelejda Kasneci,et al.  3D Gaze Estimation using Eye Vergence , 2016, HEALTHINF.

[48]  Panos Markopoulos,et al.  The design space of shape-changing interfaces: a repertory grid study , 2014, Conference on Designing Interactive Systems.

[49]  Vangelis Metsis,et al.  Low-cost head position tracking for gaze point estimation , 2012, PETRA '12.

[50]  Ivan E. Sutherland,et al.  A head-mounted three dimensional display , 1968, AFIPS Fall Joint Computing Conference.

[51]  Hans-Werner Gellersen,et al.  Orbits: Gaze Interaction for Smart Watches using Smooth Pursuit Eye Movements , 2015, UIST.

[52]  Donald H. House,et al.  Online 3D Gaze Localization on Stereoscopic Displays , 2014, TAP.

[53]  John Vince,et al.  Introduction to Virtual Reality , 2004, Springer London.

[54]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[55]  T. Overton 1972 , 1972, Parables of Sun Light.

[56]  Andreas Bulling,et al.  Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction , 2014, UbiComp Adjunct.

[57]  David Zeltzer,et al.  Autonomy, Interaction, and Presence , 1992, Presence: Teleoperators & Virtual Environments.

[58]  Donald H. House,et al.  Reducing visual discomfort of 3D stereoscopic displays with gaze-contingent depth-of-field , 2014, SAP.

[59]  Jürgen Beyerer,et al.  Real-time 3D gaze analysis in mobile applications , 2013, ETSA '13.