Signalling ballet in space and time

Although we have amassed extensive catalogues of signalling network components, our understanding of the spatiotemporal control of emergent network structures has lagged behind. Dynamic behaviour is starting to be explored throughout the genome, but analysis of spatial behaviours is still confined to individual proteins. The challenge is to reveal how cells integrate temporal and spatial information to determine specific biological functions. Key findings are the discovery of molecular signalling machines such as Ras nanoclusters, spatial activity gradients and flexible network circuitries that involve transcriptional feedback. They reveal design principles of spatiotemporal organization that are crucial for network function and cell fate decisions.

[1]  Ira,et al.  Nanoscale Organization of Multiple GPI-Anchored Proteins in Living Cell Membranes , 2004, Cell.

[2]  Jayajit Das,et al.  Digital Signaling and Hysteresis Characterize Ras Activation in Lymphoid Cells , 2009, Cell.

[3]  Julian Downward,et al.  EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2 , 1997, Oncogene.

[4]  Akihiro Kusumi,et al.  Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3–Ca2+ signaling: single-molecule tracking study 2 , 2007, The Journal of cell biology.

[5]  Karsten Weis,et al.  Visualization of a Ran-GTP Gradient in Interphase and Mitotic Xenopus Egg Extracts , 2002, Science.

[6]  A. Gierer Generation of biological patterns and form: some physical, mathematical, and logical aspects. , 1981, Progress in biophysics and molecular biology.

[7]  Boris N Kholodenko,et al.  Long-range signaling by phosphoprotein waves arising from bistability in protein kinase cascades , 2006, Molecular systems biology.

[8]  P. Pryciak,et al.  Membrane Localization of Scaffold Proteins Promotes Graded Signaling in the Yeast MAP Kinase Cascade , 2008, Current Biology.

[9]  L. Hudson,et al.  Sustained Activation of the Mitogen-activated Protein Kinase Pathway , 1999, The Journal of Biological Chemistry.

[10]  Kwang-Hyun Cho,et al.  Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway , 2009, Journal of Cell Science.

[11]  Elizabeth D. Covington,et al.  STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1 , 2009, Cell.

[12]  B N Kholodenko,et al.  Spatial gradients of cellular phospho‐proteins , 1999, FEBS letters.

[13]  John D. Scott,et al.  A-kinase anchoring proteins take shape. , 2007, Current opinion in cell biology.

[14]  Kwang-Hyun Cho,et al.  Multiple roles of the NF‐?B signaling pathway regulated by coupled negative feedback circuits , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[15]  B. Kholodenko Four-dimensional organization of protein kinase signaling cascades: the roles of diffusion, endocytosis and molecular motors , 2003, Journal of Experimental Biology.

[16]  M. Karin,et al.  Regulation and function of NF-kappaB transcription factors in the immune system. , 2009, Annual review of immunology.

[17]  B. Kholodenko,et al.  Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. , 2000, European journal of biochemistry.

[18]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[19]  Andrew B Goryachev,et al.  Dynamics of Cdc42 network embodies a Turing‐type mechanism of yeast cell polarity , 2008, FEBS letters.

[20]  Paul Nurse,et al.  A spatial gradient coordinates cell size and mitotic entry in fission yeast , 2009, Nature.

[21]  Caleb J Bashor,et al.  The Ste5 Scaffold Allosterically Modulates Signaling Output of the Yeast Mating Pathway , 2006, Science.

[22]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[23]  Jeffrey P. MacKeigan,et al.  A Network of Immediate Early Gene Products Propagates Subtle Differences in Mitogen-Activated Protein Kinase Signal Amplitude and Duration , 2004, Molecular and Cellular Biology.

[24]  J. B. Sajous,et al.  Ras signalling on the endoplasmic reticulum and the Golgi , 2002, Nature Cell Biology.

[25]  Akihiro Kusumi,et al.  GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1 , 2007, The Journal of Cell Biology.

[26]  J. Hancock,et al.  Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function , 2008, Molecular and Cellular Biology.

[27]  E. Bissonette,et al.  Modular construction of a signaling scaffold: MORG1 interacts with components of the ERK cascade and links ERK signaling to specific agonists. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. S. Broomhead,et al.  Pulsatile Stimulation Determines Timing and Specificity of NF-κB-Dependent Transcription , 2009, Science.

[29]  L. Luttrell Composition and function of G protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity , 2007, Journal of Molecular Neuroscience.

[30]  Alexandra Jilkine,et al.  Wave-pinning and cell polarity from a bistable reaction-diffusion system. , 2008, Biophysical journal.

[31]  D. Morrison,et al.  Integrating signals from RTKs to ERK/MAPK , 2007, Oncogene.

[32]  D. Fell,et al.  Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells , 2000, FEBS letters.

[33]  P. Bastiaens,et al.  Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate , 2007, Nature Cell Biology.

[34]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[35]  Victoria Sanz-Moreno,et al.  Ras Subcellular Localization Defines Extracellular Signal-Regulated Kinase 1 and 2 Substrate Specificity through Distinct Utilization of Scaffold Proteins , 2008, Molecular and Cellular Biology.

[36]  Jörg Stelling,et al.  Signaling cascades as cellular devices for spatial computations , 2009, Journal of mathematical biology.

[37]  Tianhai Tian,et al.  K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. , 2008, Cancer research.

[38]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[39]  Tianhai Tian,et al.  Subcellular Localization Determines MAP Kinase Signal Output , 2005, Current Biology.

[40]  Akihiro Kusumi,et al.  Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. , 2005, Annual review of biophysics and biomolecular structure.

[41]  Kai Simons,et al.  Lipid rafts and signal transduction , 2000, Nature Reviews Molecular Cell Biology.

[42]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Hancock,et al.  Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters. , 2008, Molecular biology of the cell.

[44]  Eytan Domany,et al.  A module of negative feedback regulators defines growth factor signaling , 2007, Nature Genetics.

[45]  D. Bar-Sagi,et al.  Ras/MAPK signaling from endomembranes , 2009, Molecular oncology.

[46]  J. Haugh,et al.  PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk , 2009, Molecular systems biology.

[47]  D. Odde,et al.  Potential for Control of Signaling Pathways via Cell Size and Shape , 2006, Current Biology.

[48]  M. Fainzilber,et al.  Retrograde signaling in axonal regeneration , 2010, Experimental Neurology.

[49]  Michael D. Cahalan,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[50]  Ravi Iyengar,et al.  Cell Shape and Negative Links in Regulatory Motifs Together Control Spatial Information Flow in Signaling Networks , 2008, Cell.

[51]  Boris N. Kholodenko,et al.  Untangling the signalling wires , 2007, Nature Cell Biology.

[52]  S. Shvartsman,et al.  Signaling gradients in cascades of two-state reaction-diffusion systems , 2009, Proceedings of the National Academy of Sciences.

[53]  J. Hancock,et al.  Lipid rafts: contentious only from simplistic standpoints , 2006, Nature Reviews Molecular Cell Biology.

[54]  E. Nishida,et al.  Molecular recognitions in the MAP kinase cascades. , 2003, Cellular signalling.

[55]  Rey-Huei Chen,et al.  Molecular interpretation of ERK signal duration by immediate early gene products , 2002, Nature Cell Biology.

[56]  S. Marqusee,et al.  A Ras-induced conformational switch in the Ras activator Son of sevenless , 2006, Proceedings of the National Academy of Sciences.

[57]  David L. Brautigan,et al.  Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient , 2008, Nature.

[58]  T. Chapman,et al.  Regulation of Microtubule Dynamics by Reaction Cascades Around Chromosomes , 2008 .

[59]  Jehoshua Bruck,et al.  Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J E Ferrell,et al.  The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. , 1998, Science.

[61]  Boris N. Kholodenko,et al.  Ligand-Specific c-Fos Expression Emerges from the Spatiotemporal Control of ErbB Network Dynamics , 2010, Cell.

[62]  Dan V. Nicolau,et al.  Identifying Optimal Lipid Raft Characteristics Required To Promote Nanoscale Protein-Protein Interactions on the Plasma Membrane , 2006, Molecular and Cellular Biology.

[63]  Ravi Iyengar,et al.  Models of Spatially Restricted Biochemical Reaction Systems* , 2009, Journal of Biological Chemistry.

[64]  Akihiro Kusumi,et al.  Single-molecule imaging analysis of Ras activation in living cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[65]  C. Marshall,et al.  Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation , 1995, Cell.

[66]  Wendell A. Lim,et al.  The Ste5 Scaffold Directs Mating Signaling by Catalytically Unlocking the Fus3 MAP Kinase for Activation , 2009, Cell.

[67]  W. Kolch Coordinating ERK/MAPK signalling through scaffolds and inhibitors , 2005, Nature Reviews Molecular Cell Biology.

[68]  M. Rao,et al.  Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity , 2008, Cell.

[69]  Boris N Kholodenko,et al.  Toggle switches, pulses and oscillations are intrinsic properties of the Src activation/deactivation cycle , 2009, The FEBS journal.

[70]  J. Ferrell,et al.  Bistability in the JNK cascade , 2001, Current Biology.

[71]  J. Hancock,et al.  Using plasma membrane nanoclusters to build better signaling circuits. , 2008, Trends in cell biology.

[72]  Boris N. Kholodenko,et al.  Giving Space to Cell Signaling , 2008, Cell.

[73]  R. Lefkowitz,et al.  Targeting of Diacylglycerol Degradation to M1 Muscarinic Receptors by ß-Arrestins , 2007, Science.

[74]  Robert G Parton,et al.  H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  T. Kohout,et al.  Targeting of Cyclic AMP Degradation to β2-Adrenergic Receptors by β-Arrestins , 2002, Science.

[76]  K. Kaibuchi,et al.  Small GTP-binding proteins. , 1992, International review of cytology.

[77]  J. Hancock,et al.  Activation of the MAPK module from different spatial locations generates distinct system outputs. , 2008, Molecular biology of the cell.

[78]  C. Marshall,et al.  A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21 ras to the plasma membrane , 1990, Cell.

[79]  K. Patterson,et al.  Dual-specificity phosphatases: critical regulators with diverse cellular targets. , 2009, The Biochemical journal.

[80]  B. Kholodenko,et al.  Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses , 2007, Molecular systems biology.

[81]  Peter Walter,et al.  Supporting Online Material for An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen , 2009 .

[82]  R. Milo,et al.  Variability and memory of protein levels in human cells , 2006, Nature.

[83]  Liang Qiao,et al.  Bistability and Oscillations in the Huang-Ferrell Model of MAPK Signaling , 2007, PLoS Comput. Biol..

[84]  A. Shaw,et al.  Scaffold proteins and immune-cell signalling , 2009, Nature Reviews Immunology.

[85]  Boris N Kholodenko,et al.  Spatially distributed cell signalling , 2009, FEBS letters.

[86]  B. Kholodenko,et al.  Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.

[87]  Tianhai Tian,et al.  Plasma membrane nanoswitches generate high-fidelity Ras signal transduction , 2007, Nature Cell Biology.

[88]  Ryoichiro Kageyama,et al.  FGF induces oscillations of Hes1 expression and Ras/ERK activation , 2008, Current Biology.

[89]  J. Pouysségur,et al.  The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition , 2007, Oncogene.

[90]  Boris N Kholodenko,et al.  Scaffolding Protein Grb2-associated Binder 1 Sustains Epidermal Growth Factor-induced Mitogenic and Survival Signaling by Multiple Positive Feedback Loops* , 2006, Journal of Biological Chemistry.

[91]  R. Lefkowitz,et al.  β-Arrestins and Cell Signaling , 2007 .

[92]  Ming Zhou,et al.  Regulation of Raf-1 by direct feedback phosphorylation. , 2005, Molecular cell.

[93]  Haluk Resat,et al.  Rapid and sustained nuclear–cytoplasmic ERK oscillations induced by epidermal growth factor , 2009, Molecular systems biology.

[94]  J. Hancock,et al.  Lipid rafts and membrane traffic , 2007, FEBS letters.

[95]  D. Teis,et al.  Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. , 2002, Developmental cell.

[96]  Marc Therrien,et al.  A dimerization-dependent mechanism drives RAF catalytic activation , 2009, Nature.

[97]  J. Pouysségur,et al.  The Dual Specificity Mitogen-activated Protein Kinase Phosphatase-1 and −2 Are Induced by the p42/p44MAPK Cascade* , 1997, The Journal of Biological Chemistry.

[98]  Carsten Schultz,et al.  Live-Cell Imaging of Enzyme-Substrate Interaction Reveals Spatial Regulation of PTP1B , 2007, Science.

[99]  Somasekar Seshagiri,et al.  De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling , 2004, Nature.

[100]  Barbara Hausmann,et al.  Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling , 2006, Nature.

[101]  Walter Kolch,et al.  Cell fate decisions are specified by the dynamic ERK interactome , 2009, Nature Cell Biology.

[102]  Andre Levchenko,et al.  Oscillatory Phosphorylation of Yeast Fus3 MAP Kinase Controls Periodic Gene Expression and Morphogenesis , 2008, Current Biology.

[103]  Charles E. Park HOW AND WHY , 1946 .

[104]  S. Mangan,et al.  The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. , 2003, Journal of molecular biology.

[105]  H. Westerhoff,et al.  Recurrent design patterns in the feedback regulation of the mammalian signalling network , 2008, Molecular systems biology.

[106]  J. Hancock,et al.  Ras plasma membrane signalling platforms. , 2005, The Biochemical journal.

[107]  Boris N Kholodenko,et al.  MAP kinase cascade signaling and endocytic trafficking: a marriage of convenience? , 2002, Trends in cell biology.

[108]  Wouter-Jan Rappel,et al.  Membrane-bound Turing patterns. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  T. Elston,et al.  Bistability, stochasticity, and oscillations in the mitogen-activated protein kinase cascade. , 2006, Biophysical journal.

[110]  Jens Timmer,et al.  Systems-level interactions between insulin–EGF networks amplify mitogenic signaling , 2009, Molecular systems biology.

[111]  A. Gorfe,et al.  Ras membrane orientation and nanodomain localization generate isoform diversity , 2010, Proceedings of the National Academy of Sciences.

[112]  Michael Knop,et al.  Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling , 2007, Nature Cell Biology.

[113]  Boris N. Kholodenko,et al.  Positional Information Generated by Spatially Distributed Signaling Cascades , 2009, PLoS Comput. Biol..

[114]  Carlotta Giorgi,et al.  Ca(2+) transfer from the ER to mitochondria: when, how and why. , 2009, Biochimica et biophysica acta.