Shape optimization of the stokes flow problem based on isogeometric analysis

Design-dependent loads related to boundary shape, such as pressure and convection loads, have been a challenging issue in optimization. Isogeometric analysis, where the analysis model has smooth boundaries described by spline functions can handle design-dependent loads with ease. In the present study, shape optimization based on isogeometric analysis is applied to the Stokes flow problems such as minimizing energy dissipation and drag force. The drag force objective is based on accurate integration of boundary pressures. Local control point insertion schemes are employed for accurate representation of geometry in an adaptive manner.

[1]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[2]  Sung-Kie Youn,et al.  Shape optimization and its extension to topological design based on isogeometric analysis , 2010 .

[3]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[4]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[5]  Jens Gravesen,et al.  Isogeometric Shape Optimization for Electromagnetic Scattering Problems , 2012 .

[6]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[7]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[8]  Kyung K. Choi,et al.  Shape Design Sensitivity Analysis of Elastic Structures , 1983 .

[9]  Roland Wüchner,et al.  Optimal shapes of mechanically motivated surfaces , 2010 .

[10]  Maenghyo Cho,et al.  Development of geometrically exact new shell elements based on general curvilinear co‐ordinates , 2003 .

[11]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[12]  Anath Fischer,et al.  New B‐Spline Finite Element approach for geometrical design and mechanical analysis , 1998 .

[13]  O. Sigmund,et al.  Topology optimization using a mixed formulation: An alternative way to solve pressure load problems , 2007 .

[14]  Niels Leergaard Pedersen,et al.  Discretizations in isogeometric analysis of Navier-Stokes flow , 2011 .

[15]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[16]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[17]  O. C. Zienkiewicz,et al.  Optimization of shape to minimize stress concentration , 1975 .

[18]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[21]  Kyung K. Choi,et al.  Shape design sensitivity analysis of built-up structures , 1986 .

[22]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[23]  M. E. Botkin,et al.  Structural shape optimization with geometric description and adaptive mesh refinement , 1985 .

[24]  M. Cho,et al.  Integration of geometric design and mechanical analysis using B‐spline functions on surface , 2005 .

[25]  Paull Pedersen,et al.  Design for Minimum Stress Concentration by Finite Elements and Linear Programming , 1982 .

[26]  Ole Sigmund,et al.  Isogeometric shape optimization of photonic crystals via Coons patches , 2011 .

[27]  Sung-Kie Youn,et al.  Isogeometric analysis with trimming technique for problems of arbitrary complex topology , 2010 .

[28]  M. Imam Three‐dimensional shape optimization , 1982 .

[29]  Sung-Kie Youn,et al.  T‐spline finite element method for the analysis of shell structures , 2009 .

[30]  Fehmi Cirak,et al.  Subdivision-stabilised immersed b-spline finite elements for moving boundary flows , 2012 .

[31]  Daniel N. Wilke,et al.  A quadratically convergent unstructured remeshing strategy for shape optimization , 2006 .

[32]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[33]  Ole Sigmund,et al.  Topology optimization of large scale stokes flow problems , 2008 .

[34]  Yunliang Ding,et al.  Shape optimization of structures: a literature survey , 1986 .

[35]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[36]  Sung-Kie Youn,et al.  Isogeometric topology optimization using trimmed spline surfaces , 2010 .

[37]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[38]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[39]  Xiaoping Qian,et al.  Full analytical sensitivities in NURBS based isogeometric shape optimization , 2010 .

[40]  Chau H. Le,et al.  A gradient-based, parameter-free approach to shape optimization , 2011 .

[41]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[42]  Kyung K. Choi,et al.  Structural Sensitivity Analysis and Optimization 1: Linear Systems , 2005 .

[43]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[44]  Seung-Hyun Ha,et al.  Isogeometric shape design optimization: exact geometry and enhanced sensitivity , 2009 .

[45]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[46]  S. S. Bhavikatti,et al.  Optimum shape design of rotating disks , 1980 .